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DEVELOPMENT AND APPLICATION OF NEW ALGORITHMS FOR

THE SIMULATION OF VISCOUS COMPRESSIBLE FLOWS
WITH MOVING BODIES IN THREE DIMENSIONS

i Rainald Lhner, Chi Yang and Juan R. Cebral
GMU/CSI, The George Mason University

Fairfax, VA 22030-4444

3 SUMMARY

The overall objective of the research carried out over the last two years was the develop-
ment of new algorithms for the efficient simulation of viscous compressible flows with
moving bodies in three dimensions using unstructured grids. The development was
based on current 3-D Euler/Navier-Stokes capabilities, and encompassed flow solvers,
grid generation, and the efficient use of emerging supercomputer hardware. The re-
search carried out over the last three years significantly advanced the state of the art

I in this area of CFD. The particular topics are treated below in detail.
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I
1. FLOW SOLVERS

I For the flow solvers, seven major developments took place over the course of this re-
search effort:

I a) Implicit flow solvers;
b) Improved spatial discretization and boundary conditions;
c) Better mesh moving strategies;3 d) Optimal, vectorized interpolation schemes;
e) Parallel h-refinement;
f) Link to CSD Codes strategy;
g) Validation studies; and
h) Store ejection from a hypersonic plane.

I 1.1 Implicit flow solvers

Implicit flow solvers are considered essential for the efficient simulation of viscous,3 compressible, time-dependent flows. We developed a linearized implicit scheme that
uses a Generalized Minimal RESiduals algorithm in conjunction with incomplete lower-

I upper (ILU) preconditioning for the solution of the Euler and Navier-Stokes equations.
The results were encouraging, showing that for Euler problems steady state results
could be achieved in less than 40 steps [1,2]. On the other hand, the storage costs and
the cost of getting close to the solution at the start of the iteration were considered
suboptimal. For technical details the reader is referred to [1], which is reproduced in
Appendix 1.

U 1.2 Improved spatial discretization and boundary conditions

Upon comparison of several high order schemes [3], improvements were made to a node-
centered upwind finite volume scheme for the solution of the Euler and Navier-Stokes
equations on unstructured meshes. The improvements included a more accurate bound-
ary integration procedure, which was consistent with the finite element approximation,
and a new reconstruction scheme based on the consistent mass matrix iteration. The
numerical results indicated that the present scheme significantly improved the quality

I of numerical solutions with very little additional computational cost. For technical
details the reader is referred to [4], which is reproduced in Appendix 2.

1.3 Better mesh moving strategies

A Laplacian smoothing of the mesh velocities with variable diffusivity based on the
I distance from moving bodies was developed [6-8]. This variable diffusivity enforces a

more uniform mesh velocity in the region close to the moving bodies. Given that in
most applications these are regions where small elements are located, the new proce-3 dure decreases considerably element distortion, reducing the need for local or global
remeshing, and in some cases avoiding it alltogether. A hypersonic store release was
used to test the new algorithm. Numerical results obtained show that the new mesh

3
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I
velocity smoothing leads to a much less deformed grid close to the moving missile. For

S this case, the number of local remeshings required dropped by a factor of 1:4, leading
to considerable CPU savings in multiprocessor environment. Since then, this algorithm

I has been used extensively for many applications ([8,11,12]). For technical details the
reader is referred to [7], which is reproduced in Appendix 3.

5 1.4 Optimal, vectorized interpolation schemes

When performing a local or global remeshing, the variables need to be interpolated
from the old grid to the new one. This is typically done using a scalar fast neighbourI search. We monitored this process on the CRAY-C90 and found, to our surprise, that
it took a considerable CPU time. Therefore, we vectorized the interpolation procedure.
The speed-ups obtained ranged from 1:4.5-1:5.0 on a 1-processor system as compared
to the best, optimized scalar code. This led to a considerable reduction of CPU times.
For technical details the reader is referred to [9], which is reproduced in Appendix 4.

1.5 Parallel H-Refinement

The classic h-refinement was extended to MIMD parallel machines. The main inno-
vation consisted of new data structures to handle the compatibility of refinement and
de-refinement cases allowed [10]. For this first demonstration, several important al-3 gorithmic aspects, such as the subsequent parallel load balancing, were left out. The
basic idea, though, proved its worth. We feel that more work is required to completeE this effort.

1.6 Link to CSD Codes

3 In order to solve, in a cost-effective manner, fluid-structure interaction problems, a
loosely coupled algorithm to combine computational fluid dynamics (CFD) and com-I putational structural dynamics (CSD) was devised. In this algorithm, the structure is
used as the 'master-surface' to define the extent of the fluid region, and the fluid is
used as the 'master-surface' to define the loads. The transfer of loads, displacements,
and velocities is carried out via fast interpolation and projection algorithms. This
fluid-structure algorithm can be interpreted as an iterative solution to the fully cou-
pled, large matrix problem that results from the discretization of the complete problem.
The advantage of this new algorithm is that it allows a cost effective re-use of existing
software, with minimum amount of alterations required to account for the interaction
of the different media.

Several example runs using FEFLO96 as the CFD code, and DYNA3D as the CSD
code, demonstrate the effectiveness of the proposed methodology. For more details,' see the AIAA invited paper, Ref. [11], which is reproduced in Appendix 5, as well as
[12],[13]. The load transfer was made conservative, a characteristic that sets it apart
from all transfer algorithms used to date [13].

4I
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I
1.7 Validation studies

The efficiency and fidelity of the new Arbitrary Lagrangian-Eulerian (ALE) methodol-
ogy on unstructured grids was validated by two simulations. This validation effort was
part of an ongoing research effort to develop a cost-efficient and accurate numerical
methodology capable of simulating the motion of complex-geometry, three-dimensional
bodies embedded in external, temporally and spatially evolving flow-fields.

The first computation modeled the release of a finned store from a generic wing/pylon
configuration. The numerical Eulerian predictions were compared to the availableU experimental data for both the wing and the separating store placed at three drop
distances. Very good agreement was obtained between the predicted and measured Cp
axial variation on the wing and along four angular cuts on the captive store.

I The second simulation modeled multiple-store ejection from an F-117 fighter. The
efficiency of this simulation was aided tremendously by the improved local remeshing

I methodology. Although the stores traveled a very long distance, only ten global remesh-
ings were required, compared to approximately sixty to eighty that would have been
required with the old methodology. The replacement of the expensive global remeshing,
is the key to the affordability of such a large-scale moving body simulations. For more
details, see Ref. [6,8].

S 1.8 Store ejection from a hypersonic plane

In order to investigate the interactions of missiles and planes during the store ejection
at hypersonic speeds, a numerical simulation model was built. This model separates
the whole ejection process into three stages. The first one is the steady motion part,
where the plane flies at the Mach number of 8 and there is no relative motions among3 missles and the plane. The second one is the prescribed motion part, where the plane
continues flying at the same Mach number, and each missile moves in terms of its
prescribed relative motion. The third one is the free motion part, where the plane
continues flying at the same Mach number, and the motion of the missiles are solely
controled by aerodynamic forces. Three missiles with two in the front and one in the
back are used in the simulation. The missiles starts turning after they are released.

This simulation is very CPU intensive, and requires a lot of local and global remeshings.
This simulation was made possible by the new ALE mesh velocity for moving body was3 developed to reduce the development of the deformed grids close to the moving mis-
siles. This technique is described above in the section 1.3. Numerical results obtainedI show that the number of local remeshings required dropped by a factor of 1:4, leading
to considerable CPU savings in a multiprocessor environment. The average element
number was about 750,000 during the run. A global remeshing was required about
every 2,000 timesteps. A film of this simulation was made on a SGI workstation and
delivered to the contract monitor.

!5
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I
2. GRID GENERATION

In the area of grid generation, there were five major developments that took place
during the course of this research effort:

a) Improvements in robustness and speed;
b) Surface meshing from discrete data;
c) Element size attached to CAD-data;
d) Adaptive background grids; and
p) Navier-Stokes gridding.

2.1 Improvements in robustness and speed

At the beginning of this effort, the advancing front technique was still prone to occa-3 sional failures, and relatively slow. With the advent of more powerful supercomputers,
the problem complexity increased, leading to larger grids. These large grids accen-
tuated the remaining problems in mesh generation. The robustness of the advancing

* front technique was enhanced by only allowing the creation of well-formed elements,
additional neighbour checks, transformation to unit frame, checks for the usage of close
points and faces, and the introduction of additional distance criteria for front-crossing
tests. Speed was enhanced by storing (and interpolating) background grid and source
data not at the faces (as previously done), but at points. For large number of sources,

I this can lead to speed-up factors of 1:5.

2.2 Surface meshing from discrete data

3 An advancing front surface gridding technique that operates on discretely defined faces
was developed [14,15]. This technique is based on three steps: surface feature recovery,
actual gridding, and surface recovery. The following aspects have to be considered
carefully in order to make the precedure reliable for complex geometries:

a) Recovery of surface features and discrete surface patches from the discrete data,
b) Filtering based on point and side normals to remove undesirable data close to

cusps and corners,
c) Proper choice of host faces for ridges, and
d) Fast interpolation procedures suitable for complex geometry.

Several examples ranging from academic to industrial demonstrated the utility of the
developed procedure for ab initio surface meshing from discrete data, such as encoun-3 tered when the surface description is already given as discrete, the improvement of
existing surface triangulations, as well as remeshing applications during runs exhibit-
ing significant change of domain. For technical details the reader is referred to [15],
which is reproduced in Appendix 6.

! 6
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I
2.3 Element size attached to CAD-data

I For problems that require gridding complex geometries, the specification of proper
element sizes can become a tedious process. Conventional background grids would
involve many tetrahedra, whose generation is a labor-intensive, tedious task. Point,
line, or surface-sources are not always appropriate either. A better way to address
these problems was devised by attaching element size directly to CAD-data. For many
problems, the smallest elements are required close to the boundary. Therefore, the next
element size may be obtained by multiplying it with a user-specified increase factor if
the element size for the points of the current front is stored. See Refs. [16-18] for more

I details.

I 2.4 Adaptive background grids

In order to reduce the amount of user intervention to a minimum, we developed adap-
tive background grid refinement. We defined where to refine and how to refine. The

S refinement was made in two passes: Pass 1: background grid adjustment, and Pass 2:
selection of elements to be refined. The new designed background grid adaption may
be used to automatically generate grids that represent the surface within a required or
prescribed accuracy. See Refs. [16-18] for more details.

I 2.5 Navier-Stokes gridding

Creating highly stretched grids of acceptable quality for complex configurations has
been an outstanding goal for over two decades. We developed a technique that sepa-
rates the zones to be meshed into mainly isotropic (Euler region) and mainly anisotropic
(RANS region, close to walls/shear layers). The RANS regions are meshed first, by
growing prismatic elements from the boundary. These prismatic elements are sub-
divided into tetrahedra. The resulting mesh is analyzed for element shape and size.
Bad/large/distorted elements are removed accordingly. This results in a first front of

I faces. The remainder of the domain is gridded using the traditional advancing front
technique. This procedure works well [16-19], but is not completely general. We have,
as of late, tried to mesh some very complex geometries with it, and have encountered

I difficulties. Some possible solutions habe been proposed but not yet implemented. For
technical details the reader is referred to [18], which is reproduced in Appendix 7.

!7
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I
3. EFFICIENT USE OF SUPERCOMPUTING HARDWARE

In order to keep up with the rapid advance of supercomputing hardware, all algorithms
used were examined with respect to their suitability for distributed memory parallel
machines. There were two major developments that took place during the course of
this research effort in this area:

a) Load balancing;
I b) Timing and benchmarking.

3.1 Load balancing

A new load balancing scheme, based on a greedy algorithm with diffusion-based im-
provement was developed and tested. The algorithm allows for almost perfect (<1%)
load balance for arbitrary number of processors, load per element and mesh topology
in less than 20 passes over the mesh [20]. This is in contrast to popular recursive sub-
division techniques, where the number of processors must be a power of 2, and local3 element imbalances are more difficult to account for.

I 3.2 Timings and benchmarking

The new load balancing scheme was used to split meshes and time them on several
parallel platforms, including the Intel Touchstone and Paragon, Thinking Machines
CM5, and IBM SP2. The timings were restricted to steady-state problems, i.e. no
moving/deforming meshes were present, and no h-refinement was used. For this class
of applications, the timings showed almost perfect speed-up, even for very large number
of processors (>380 for the Intel Touchstone). These results are very encouraging and
bode well for the future of the schemes used so far. Work is continuing in order to port

* all aspects of the methodology to a distributed memory parallel hardware environment.

!8
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I
4. SUMMARY

I The present research effort significantly advanced the state of the art in the simulation
of compressible viscous flows with moving bodies. A number of breakthroughs and
'firsts' were achieved, of which the following are considered the most important:

- The first simulation using an implicit scheme with unstructured grids with more3 than a million elements [1];

- An optimal mesh velocity technique based on a nonlinear Laplacian that minimizes
remeshing requirements by an order of magnitude [7];

- The first vectorized, optimal-speed interpolation techniques for unstructured
grids [9];

I The first conservative load transfer algorithm for fluid-structure interaction simu-
lations [13];

3 The first simulation of compressible flows with more than a hundred independently
moving bodies [8];

3 - The most complex fluid-structure interaction simulation to date [12]; and

- The first realistic CFD simulation with close to 400 processors [21].

I More work is still required to transform these algorithms into daily production tools
that can be used effectively in the design and engineering process.I

I
I
I
I
I
I
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where Vi is the volume of the dual mesh cell (equiva- terms are linearized in a straightforward manner, ex-
lent to the lumped mass matrix in the finite element), cept that the viscosity coefficient is not linearized.
R, is the right-hand-side residual and equals to zero Equation (4.2) represents a system of linear
for a steady state solution. The Euler implicit dis- simultaneous algebraic equations and needs to be
cretization and linearization of equation (4.1) in time solved at each time step. This system of equations can

leads to a system of linear equations be solved by direct matrix inversion; however, this re-
quires considerable computer memory and CPU time.

V OR ) = Rn (4.2) Iterative methods are attractive due to their compu-
Et-+ - AU = tational efficiency and relatively low memory require-

ments. In this work, the system of linear equations
where At is the time increment, and AUn the dif- is solved by the Generalized Minimal RESidual (GM-
ference of unknown vector between time levels n and RES) method of Saad and Schultz'". It is a gener-
n + 1, i.e., alization of conjugate gradient method for solving a

AU = - U •(4.3) linear system
Note that as At tends to infinity, the scheme Ax = b (4.7)

reduces to standard Newton's method for solving a where the coefficient matrix is not symmetric and/or
system of nonlinear equations. Newton's method is positive definite. The use of GMRES combined
known to have quadratic convergence property. The with different preconditioning techniques is becoming
term represents symbolically the Jacobian ma- widespread in the CFD community for the solution

It involves the linearization of the numerical of the Euler and Navier-Stokes equations6,1"0 13. GM-
trix. Fon oe's RES minimizes the norm of the computed residual
flux vectors. For example, considering Roe's approx- vector rn = b - Axn over the subspace spanned by a
imation of the inviscid flux vector: certain number of orthogonal search directions. GM-

1 RES by itself is not a very efficient scheme. It mustI Rn v(i, Uj, n) 2 (F(Ui, n) + F(Uj, n)) be augmented by a preconditioner to produce accept-

1 able efficiency. It is well known that the speed of
-2 A(U) I (Uj - Ui), (4.4) convergence of an iterative algorithm for a linear sys-
2 tem depends on the condition number of the matrLx

the Jacobian terms am A. The preconditioning technique involves solving an
nmust be de- equivalent preconditioned linear system

rived. The exact Jacobian linearization of Roe's flux
function is possible, but extremely expensive to evalu- A• = b (4.8)
ate. A good approximation, which is computationally
efficient, is to neglect the terms arising from differen- instead of the original system (4.7), in the hope that

tiation of I A(U) I in the linearization process. This A is well conditioned. Three forms of preconditioners
leads to the following approximate linearization can be defined as following

-P _ 1 OF(U, n) 1 P-iAx = P-ib , (4.9)S- 2 O~i ±+ IA(U) I
OUi AQQ-'z = b, (4.10)

12(A(Ui)+ I A(O) (4.5)
(4.5) and

P-IAQQ-ix = P-'b. (4.11)

C9Rn 1 OF(U , n) 1The systems of linear equations in equations (4.9),

a OU 2 OUj 2 1 A(U) (4.10), and (4.11) are referred to, respectively, as left-
preconditioned, right-preconditioned, and symmetric-

!(A(Uj)- I A(U) (4.6) preconditioned, and P and Q as left and right precon-
2 (ditioners.

The motivation for preconditioning is twofold: a)
The justification of this approximation can be found reduce the computational effort required to solve the
in reference"l. In addition, in order to reduce the linearized system of equations at each time-step, and
number of non-zero elements in the matrix and to b) reduce the total number of time-steps required to
simplify the linearization, only a first order represen- obtain a steady state solution. Preconditioning will
tation of the inviscid flux terms is linearii R This be cost-effective only if the additional computational

results in the graph of the sparse matrix u being work incurred for each sub-iteration is compensated
identical to the graph of the supporting unstructured for by a reduction in the total number of iterations
mesh. The penalty in making these approximations to convergence, so that the total cost of solving the
in the linearization process is that the quadratic con- overall non-linear system is reduced. In the present
vergence of Newton's method can never be achieved work, a preconditioner derived from the block incom-

because of the mismatch between the right and left plete lower-upper factorization of matrix A has been
hand side operators in equation (4.2). The viscous found to be an effective preconditioner and has been

3



used throughout. All left, right, and symmetric pre- this purpose, a plus-minus flux splitting is applied to i
conditionings have been implemented. exterior and interior values in reference 5 . More pre-

Grid renumbering is also used to improve the cisely, the inviscid flux at the boundaries is evaluated
convergence of the GMRES. Ordering of nodes in the using Steger-Warming's flux vector splitting I
grid has been found to affect the convergence rate of

iterative solvers. Following reference 7 , the mesh is / F'njdF =
renumbered according to the Reverse Cuthill-McKee Jacinr_
method. I

Using an edge-based data structure, the im- ] (A+(U,,n)U, + A-(U,n)Ueo)dr (5.2)

plicit coefficient matrix is stored in upper, lower, mcnr.

and diagonal matrix forms. It requires a storage of It is worth noting that the treatment of boundary
2 x nedge x neqns x neqns + npoin x neqns x neqns, conditions implies that for supersonic inflow, the flux
where npoin is the number of grid points, neqns num- imposed is computed from the fluid state at the in-
ber of unknown variables, and nedge number of edges. finity, and for supersonic outflow, the flux imposed
The same amount of memory requirements is needed is computed from the state variables at the cell I.
to store the preconditioning matrix. In addition, a Clearly, such treatment of boundary conditions is con-
storage corresponding to npoin+(2x nedge+npoin) is sistent with the mathematical theory of characteris-
required for the two index arrays, which are necessary tics and correctly accounts for wave propagation in 3
for the factorization of ILU. The need for additional the far field. However, when this boundary condition U
storage associated with the GMRES algorithm is an was applied to the present implicit scheme, the con-
array of size (k + 2) x neqns x npoin, where k is the vergence history was not satisfactory for some test
number of search directions. For k = 10, this results cases. Hence, Steger-Warming's flux vector splitting
in about 775 * npoin storage locations in 3D. Coin- is replaced by Roe's flux-difference splitting in this
pared with 95* npoin storage locations needed by its work. This leads to
explicit counterpart, the present implicit scheme re-
quires about 8 times more memory. / Fi njdF = c/(! (F(U,,n) + F(U. ,n))

5. IMPLICIT BOUNDARY CONDITIONS J ni' 1

The results of this investigation indicate that the - 1 A(U) J (Ulo - Ui))dr. (5.3) *
treatment of boundary conditions is crucial to the suc-
cess of an implicit scheme. When boundary condi- This procedure provides a boundary point treatment
tions are treated explicitly, only a very limited CFL that is completely compatible and consistent with the
number can be used, resulting in an inefficient algo- interior point differencing scheme. The numerical ex- I
rithm. In order for the implicit scheme to be stable perience indicates that this treatment of boundary U
at high CFL numbers, boundary conditions must be conditions gives very satisfactory convergence.
incorporated implicitly. In the present work, this is All boundary conditions are then linearized con-
realized by imposing the boundary conditions during sistently, and are included in the left-hand-side ma-
the evaluation of flux at boundary surfaces, and then trix. For viscous flow, as Dirichlet boundary condi-
by linearizing these boundary conditions and adding tions are imposed on the solid wall, both left-hand-
them to the implicit coefficient matrix. Two basic side matrix and right-hand-side vector have to be
types of boundary conditions are defined: a solid wall modified in order for the Dirichlet boundary condi-
boundary condition and inflow and outflow boundary tions to be satisfied.
conditions. It is worth noting that the boundary conditions

On the solid wall, the slip boundary conditions are imposed on the boundary faces, not at the bound-
are assumed for inviscid flow. The tangency flow con- ary points. Therefore, this avoids ambiguity for a U
dition is implemented by imposing no flux through the boundary point that lies on a junction between two
wall, so that the inviscid flux normal to the boundary boundary condition types.
face is 6. NUMERICAL EXAMPLES I

f 0 A variety of test cases for a wide range of flow

pn, conditions, from subsonic to supersonic, in both 2D
Finjdr=' =pny dr . (5.1) and 3D, is selected to demonstrate the effectivenessfcrnr. acinr. IpnZ of the present implicit scheme over its explicit coun-

\0 terpart. All of the computations are done using a
non-restarted GMRES with a left block ILU precon-

For viscous flow, the no-slip boundary condition is ditioner, unless otherwise stated. The solution tol- U
assumed and the given wall temperature is imposed erance for GMRES is set to 0.1 with 10 search di-
strongly. rections. All computations were initiated with the

At inflow and outflow boundaries, the flow is sup- freestream flow as the initial guess. It has been found l
posed to be advection dominated, and a precise set of necessary to use a small CFL number when an initial
compatible exterior data has to be selected, depend- guess is taken to be the free stream condition. The
ing on the flow regime and the velocity direction. For start-up CFL number was around 2 and was allowed
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to increase inversely proportional to the L2 norm of results were obtained using a maximum CFL number
the residual, up to some maximum CFL number. of 1,000.

A standard and widely accepted approach to Test case 3. 2D viscous flow past NACA0012 airfoil
judge the performance of different numerical schemes
is to determine the amount of computational or CPU The third test case consists of a supersonic low-
time required by the particular scheme to reduce the Reynolds-number flow where the Mach number is 2,IL norm of the residual vector to a certain order of the angle of attack is 10 deg, and the Reynolds num-
magnitude. However, the CPU time of an algorithm ber is 106. This represents a standard test case, which
can be heavily influenced by the skills of the indi- has received wide attention in the literature and for
vidual programmer. Efficient implementations often which experimental data is available. The mesh, con-
require investments in 'real' time and patience by the taining 29,386 elements, 14,878 points and 370 bound-
programmer. In addition, an implementation on one ary points after two levels of refinement, is shown in
particular machine may run faster or slower on an- Fig. 3a. The density contours of the computed flow
other machine, i.e., the CPU time may be machine field are depicted in Fig. 3b, where a strong bow
dependent. Therefore, in this research, the numeri- shock is observed. The pressure coefficient distribu-
cal schemes performance was compared based on the tion on the airfoil is shown in Fig.3c. The convergence
number of time steps required to reduce the L2 norm history is shown in Fig. 3d, where only 60 time steps
of the residual vector (normalized by the norm of were required for the residual to drop about 4 orders
the initial residual vector) of the problem by certain of magnitude, even with two levels of refinement. The
orders-of-magnitude. implicit scheme results were obtained using a maxi-
Test case 1. 2D inviscid flow past NACA0012 airfoil mum CFL number of 1,000.

The problem under consideration is an inviscid Test case 4. 3D inviscid flow in a channel
transonic flow around a NACA0012 airfoil with a The fourth test case is the well known Ni's test
freestream Mach number of 0.85 and an angle of at- case: an inviscid flow in a channel with a 10% thick
tack of 1 degree. This is a classical and significant test circular bump on the bottom. Inlet Mach number was
problem for Euler solvers. The mesh, consisting of 0.675. This is a 3D simulation of a 2D flow. The mesh,
6,397 elements and 3,274 is shown in Fig. L.a. Fig.lb which contains 13,891 grid points, 68,097 elementsI displays the computed pressure contours in the flow and 4,442 boundary points, is depicted in Fig.4a.field. The pressure coefficient distribution on the air- Fig.4b displays the computed pressure contours onfoil is shown in Fig.lc. Fig.ld displays a comparison the surfaces. The Mach number distribution on lowerof convergence histories among the explicit scheme, wall is shown in Fig.4c. Fig.4d displays a comparison
the explicit scheme with implicit residual smoothing, of convergence histories between the explicit scheme
and the implicit scheme with ILU preconditioner, re- and the implicit scheme with left, right, and sym-
spectively. The explicit scheme results were obtained metric ILU preconditioner, respectively. The explicit
using two stage Runge-Kutta scheme and a CFL num- scheme results were obtained using three stage Runge-
ber of 0.8. The explicit scheme with implicit resid- Kutta scheme with implicit residual smoothing and a
ual smoothing uses three stage Runge-Kutta scheme CFL number of 4. The implicit scheme results were
and a CFL number of 4.0. The implicit scheme re- obtained using a CFL number of 100,000. Contrary to
sults were obtained using a maximum CFL number the results obtained in reference1 ", the left, right and
of 10,000. symmetric preconditioners performed equally well.
Test case 2. 2D viscous flow past a flat plate

This test case involves a laminar flow past a flat Test case 5. 3D inviscid flow past a F-117 fighter
plate at a Mach number of 0.5 and a chord Reynolds The last test case involves a 3D simulation of an
number of 10,000. The mesh used in the computation inviscid flow past a complete f-117 stealth fighter at
is shown in Figure 2a. It contains 2,604 elements, a Mach number of 0.8 and an angle of attack of 5 de-
1,376 points, and 146 boundary points. The com- grees. The mesh, which contains 509,853 elements,
puted Mach number contours in the flow field are 92,854 points, and 12,657 boundary points for the
depicted in figure 2b, where the development of a half-span airplane, is shown in Fig.5a. The computedboundary layer can be clearly observed. Figure 2c Mach number contours in the flow field are depicted

shows the comparison of the Blasius velocity profile in Fig.5b. For the purpose of comparison, the compu-
and the computed velocity profiles as scaled by the tation was performed using both explicit and implicit
Blasius similarity law at different chord length down- schemes on the Cray-M90 computer at the Cray Re-
stream of the leading edge. The computed results search Inc. The solution was converged to engineer-
indicate that the similarity solution for a flat plate ing accuracy (a decrease of a four order-of-magnitude
boundary layer is correctly obtained and the solution in the L2 norm of the density residual). The ex-
agrees well with the Blasius solution. Finally, Fig- plicit scheme solution was obtained using three stage
ure 2d shows a comparison of convergence histories Runge-Kutta scheme with implicit residual smooth-
between the explicit and implicit schemes. The ex- ing and a CFL number of 4. The implicit scheme
plicit scheme results were obtained using three stage results were obtained using a maximum CFL number

Runge-Kutta scheme with implicit residual smooth- of 10,000. Comparisons of their performance in terms
ing and a CFL number of 4.0. The implicit scheme of time steps, CPU time, and storage requirements
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are presented in Table 1 below. Aerodynamic Configurations Using an Edge-Based
Finite Element Schemes," AIAA Paper 93-2933, 1993.

Table 1. Time step, CPU, and Storage requirements 3 Peraire, J., Peiro, J., and Morgan, K., "A 3D
Finite element Multigrid Solver for the Euler Equa- U

Explicit Implicit tions," AIAA Paper 1992-0449, 1992.

Time steps 1400 35 4 Barth, T. J., "Numerical Aspects of Comput- i

CPU 16 hours 3.5 hours ing Viscous High Reynolds Number Flow on Unstruc-

Storage 50 Mwords 165 M'lwords tured Meshes," AIAA Paper 1991-0721, 1991.

5 Billey, V., P6riaux, J., Perrier, P., and Stouffiet,

An analysis of these results demonstrates that B., "2-D and 3-D Euler Computations with Finite El- U
the implicit scheme runs approximately 4 times faster ement Methods in Aerodynamic," International Con-

than its explicit counterpart, while requiring about ference on Hypersonic Problems, Saint-Etienne, Jan.

3.5 times more memory. It must be remarked that 13-17, 1986.

the code includes all extra arrays required for ALE 6Venkatakrishnan, V., and Mavriplis, D. J., "Im-
formulation, H-refinement, and remeshing. plicit Solvers for Unstructured meshes," AIAA Paper

7. CONCLUSIONS 91-1537, 1991. 3
An implicit algorithm has been developed for the 7 Whitaker, D. L., "Solution Algorithms for the

solution of the compressible Euler and Navier-Stokes Two-Dimensional Euler Equations on Unstructured
equations on unstructured meshes. The treatment of Meshes," AIAA Paper 90-0697, 1990. 1
implicit boundary conditions has been found to be 'Hassan, 0., Morgan, K., and Peraire, J.,
critical to the success of an implicit scheme. The "An Implicit Finite-Element Method for High Speed
numerical results have shown that the present im- Flows," AIAA Paper 90-0402, 1990.
plicit scheme converges to the asymptotic steady state
much faster than its explicit counterpart. Overall 9 Batina, J. T., "Implicit Flux-Split Euler
speed-up factors of up to 5 for the Euler equations Schemes for Unsteady Aerodynamic Analysis Involv-
and at least one order of magnitude for the Navier- ing Unstructured Meshes," AIAA Paper 90-0936, e
Stokes equations are found in the examples shown. 1990. U
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ABSTRACT with the finite element approximation. This consis-
tent boundary integration formula is derived here.

This paper describes recent improvements to a The accuracy of any upwind finite volume scheme
node-centered upwind finite volume scheme for the is strongly determined by the accuracy of a funda-
solution of the compressible Euler and Navier-Stokes mental process known as reconstruction: e.g. given
equations on unstructured meshes. The improve- pointwise values of the solution at the nodes of the

ments include a more accurate boundary integration mesh, reconstruct the polynomial approximation to
procedure, which is consistent with the finite element the solution in the control volume. It has been
approximation, and a new reconstruction scheme demonstrated that the piecewise linear reconstruction
based on the consistent mass matrix iteration. Sev- methods offer a substantial improvement over the ba-

eral numerical results are presented to demonstrate sic first order piecewise constant schemes- 1 0 . The
the performance of the proposed improvements. The piecewise quadratic reconstruction provides a further
numerical results indicate that the present scheme sig- improvement over its piecewise linear counterpart.
nificantly improves the quality of numerical solutions However, this is achieved at a very high computa-
with very little additional computational cost. tional cost'. In addition, application of the piecewise

I. INTRODUCTION quadratic reconstruction scheme to highly stretched
meshes remains a problem. Therefore, only piecewise

The use of unstructured meshes for com- linear reconstruction methods are of interest in this
putational fluid dynamics problems has become paper. These methods require a best estimate for the
widespread due to their ability to discretize arbitrar- solution gradients within each control volume. The
ily complex geometries and due to the ease of adap- most popular linear reconstruction schemes on un-
tion in enhancing the solution accuracy and efficiency structured meshes are based on either a Green-Gauss
through the use of adaptive refinement techniques. formulation or a least-squares principal. Here, we
In recent years, remarkable progress has been made propose a new reconstruction scheme based on the

in the development of upwind algorithms for the so- consistent mass-matrix, motivated by the observation
lution of the Euler and Navier-Stokes equations on that the consistent mass-matrix should be used in the

unstructured meshes1- 7 . A significant advantage of first place, when the solution gradient is computed in
any upwind discretization is that it is naturally dissi- a finite element context. Unlike the Green-Gauss or
pative as compared with central-difference discretiza- least-squares reconstruction schemes, which rely only
tions, and consequently does not require any problem- upon next-neighbor information, the mass-matrix re-

dependent parameters to adjust. construction involves information of points beyond

The present authors have developed an upwind nearest neighbors. It is this extra information that

finite element scheme for the solution of the com- yields a more accurate estimation of solution gradi-
Spressible Euler and Navier-Stokes equations1- 2 . it ents.

has been found that the finite element scheme gives Several numerical results for a wide range of flow

better results than its finite volume counterpart, al- conditions, from subsonic to supersonic, in both invis-
though it can be shown that for interior points both cid and viscous flows, are presented to demonstrate
schemes yield the same approximation. A detailed the performance of the proposed improved scheme.
examination led us to discover that this discrepancy The numerical results indicate that the mass-matrix
results from assuming piecewise constant numerical reconstruction gives much better results than the
fluxes for the boundary integrals, resulting in a poor Green-Gauss or least-squares schemes and that con-
approximation for the boundary points. A careful sistent boundary integration is important to both con-

numerical integration formula has to be used in the vergence and accuracy for some test cases.
boundary integrals to get a consistent approximation II. GOVERNING EQUATIONS

Copyright @1995 by the authors. Published by the 1

American Institute of Aeronautics and Astronautics,
Inc. with permission.



The Euler and Navier-Stokes equations governing
the unsteady flows can be written in integral form as I

rIL ->fa F.- ndr F ]F ndrP. (4)a ~~j aci,2 ai
O-fUd+ fF.ndr = o, (1)

The numerical fluxes on the interface 0Cij are approx- -
imated at the mid-point of edge ij, and the integral 3for a domain f? with boundary r = 8fl. In this equa- along the interface can then be evaluated as

tion, U is the vector of the conservative variables for
mass, momentum, and energy. The F represents the [F ndr=F-F N.. (5)
inviscid and viscous flux vectors. n denotes the out- F . = • ,
ward normal to the boundary r.
III. FINITE VOLUME DISCRETIZATION where Nij = faci, ndr denotes the normal to the

interface 8Cii. U
The governing equation (1) is discretized using a It is clear that the right hand side is formed by

node-centered finite volume formulation, where flow two loops; one is over the edges of the mesh, the other
variables are placed at the nodes of the mesh. The over the boundary faces. It can be readily shown that
control volume Ci for each node i is taken to be the if a linear shape function for the fluxes is used in the
median dual mesh cells, which are constructed by con- finite element method, i.e.,
necting the centroid of the neighboring cells and the
midpoints of the two edges that share the vortex i, as F = • FiNi (6)shown in Figure a. '

where Ni is the standard linear finite element shape
aCI function associated with the node i, and a linear in-

terpolation used for the fluxes in the finite volume *
"method, i.e., 5

2
Fr, = 2(r, + F,), (7)

both approximations would produce the same results ,
for an interior point (i.e. the same right hand side ).
However, this is not necessarily true for a boundary
point, where the results depend on how to one com-
putes the boundary integral in Eq. (4). If the bound-
ary integral is computed using a piecewise constant
approximation for the numerical fluxes, i.e.,

j F.ndr = F nF .,i 4, (8)facinr

C] where the summation is over all the boundary faces

Fig. a Representative Unstructured Grid and Dual attaching the node i, nj represents the unit vector

Mesh Cell normal to the boundary face ij, and Lij denotes the

The finite volume approximation of the governing length of boundary face ij, they will give different

equation (1), applied to the control volume around right hand side. The natural question to be asked at

node i becomes this point is then which one gives the better approx-
imation. To illustrate this point, we compared the

du 1  r velocity field for a potential flow in a channel using
area(Ci)-j +o F. ndr = 0, (2) both the finite volume approach and the finite ele- 3ti Oc, ment approach. Note that the finite element approach

is equivalent to the common area-weighted averaging
where OCi is the boundary of the control volume Ci. approach. Figures b and c display the velocity con-

The flux integral in equation (2) is evaluated tours obtained by finite volume and finite element ap-
by summing all the contributions over the cell inter- proximations, respectively. One can clearly see that
faces between the node i and its neighboring node j, the finite volume approach gives an erroneous solution
aCi (= aCi n aCi). Equation (2) can then be rewrit- on the boundaries, while the finite element approach 3
ten in a compact form as produces a correct solution. Assuming that both ap-

proaches produce the same results for a boundary
dUl (3) point, it is a direct but lengthy process to show that-= -R, the following integration formula should be used in

the boundary integral for the finite volume approach:where M1 is the volume of the dual mesh cell (equiva- 5,F

lent to the lumped mass matrix in the finite element), / F' ndr= : I5F1+Fin (
and R, is the right hand side residual, acinr 6 2 (9)
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I in 2-D, and where I A I denotes the standard Roe matrix evalu-
ated in the direction Nij. In equation (11), the solu-

SfF.nd = 6F +F + nF k Lik tion is assumed to be piecewise constant per control

c, nr 8 3 volume, and the resulting upwind scheme is only first
order accurate in space. To achieve higher order ac-

in 3-D. In general, the difference between using the curacy, the solution is assumed to be piecewise linear
piecewise constant approximation and the above av- in the control volume, and the numerical fluxes at theeraged formulas in the boundary integrals for the Eu- interface is evaluated using upwind-biased interpola-
ler equations has little effect on both solution conver- tions of the solution U via the MUSCL approach' 2 .

gence and accuracy. But for some cases, the difference This leads to the numerical fluxes
can be so significant that the consistent integration
formulas (9) and (10) are recommended for use. F,. N1 =-(F +F7).Nj

3 - 1 A(Ut, Uj, Nj) I (U7 - Ut) (12)
S• . where

Ft = F(Ut), FT = F(U). (13)

The upwind-biased interpolations for Ut and UT are
defined by

Ut = Ui + Oli. VUi, (14)

Fig. b Potential velocity contours obtained using finite
volume approach and1

1(15

w Where lij = rj- ri is the length vector of this edge
and 0 is the flux limiter.

IV. RECONSTRUCTION SCHEMESI\
As seen above, accurate reconstruction is the key

ingredient in extending a first order upwind scheme to
higher order spatial accuracy on unstructured meshes.I, The reconstruction algorithm consists of finding a
polynomial representation to the solution in each con-

trol volume, given pointwise values of a solution at
nodes of the mesh. For the piecewise linear recon-SFig. c Potential velocity contours obtained using finite struction, where a linear polynomial approximation

element approach to the solution is generated in each control volume,
As mentioned earlier, if the numerical fluxes at the computation of solution gradients at nodes of the

the interface in equation (5) are simply evaluated as mesh is simply required. In this section, three meth-
an arithmetical average of the normal fluxes, the re- ods of computing solution gradients will be addressed
suiting finite volume scheme, equivalent to the classic and discussed.
Galerkin finite element scheme, allows for for the ap- a. Green-Gauss reconstruction
pearance of checkerboarding modes, and thus suffers
from numerical instabilities, unless some type of nu- The most commonly used and the simplest re-
merical dissipation in the form of artificial viscosity is construction scheme is the Green-Gauss gradient re-
introduced. To construct a stable scheme for the Eu- construction. This gradient calculation is obtained by
ler equations, any of the Riemann solvers can be for- using the control volume approach and applying the
mulated by adopting different forms for the numerical Green-Gauss's theorem,
fluxes at the interface. In the present work, a stable
scheme is obtained by using one of the most popu- M,(Vu), u ndr. (16)
lar approximate Riemann solvers, namely the flux-loci
difference splitting of Roe"l:

As mentioned in the previous section, this reconstruc-
Fj • Nj 12(Fi + Fi) • N, tion scheme is equivalent to the area-weighted aver-

aging approximation in the finite element, if the con-

1 sistent integration formulas (9) and (10) are used in
- A(U,,Ui,N) I (Uj - Uj), (11) the boundary integral.

3



b. Least-Squares reconstruction data structure. The computational cost for solving I
Least squares reconstruction provides an alter- this equation is very small compared to the overall

native method for computing solution gradients. The cost for any upwind type schemes. 3
computation of solution gradients are performed in V. NUMERICAL RESULTS
the form of a minimization problem. The complete All computations used an explicit three-stage
details of this reconstruction procedure can be find in Runge-Kutta time-stepping scheme with local time
reference 8. However, the procedure will be summa- stepping and implicit residual smoothing for advanc-
rized here for completeness. Consider a node i and ing the solution to steady state. The solutions were
assume that the solution veries linearly along an edge obtained by converging the residual to computer ma-
ij. Then, the change in node values of the solution chine zero. Wherever possible, the solutions were ob-
along this edge can be computed by tained using a second order scheme without any lim-

iters, in an effort to ensure that the solution accuracy
(17u)i • (rj - ri) = uj - ui. (17) is affected only by the reconstruction schemes, not by

Similar equations could be written for all edges con- the limiters.

nected to node i, subject to an arbitrary weighting Test case 1. Supersonic vortex flow
factor wi. This yields the following non-square ma- The problem under consideration is an inviscid
trix supersonic vortex flow. This test case was selected I

to compare the order of accuracy and discretization
wJAXl w Ayl (U) wi(ul -ui) error associated with Green-Gauss, least-squares, and

: : U = .consistent mass reconstruction schemes, since an ex-(uy' act, closed form, analytical solution exists for such

SwnA ln wIAYn ]W (Un - ui) flow. Since this is a shock free compressible flow, the
(18) solution is obtained using a second order scheme with-

which can be solved using the least squares method. out any limiters. Thus, this test case provides a good !
The algorithm can be implemented using the edge- opportunity to compare the accuracy of each recon-
based data structure at a cost comparable to that of struction schemes, without any influence of limiters.
the Green-Gauss reconstruction. By comparing the error in the discrete solutions on a

This formulation provides a freedom in the choice successively refined sequence of meshes, quantitative 3
of weighting coefficients wi. These weighting coef- measurements of both order of accuracy and absolute
ficients can be selected as a function of the geome- error are possible. For each reconstruction scheme,
try and/or solution. Classical approximations in one solutions are sought on a set of three telescoping grids
dimension can be recovered by choosing geometrical with 31X31, 61X11, and 121X21 nodes. The Mach
weights of the form wi = 1.0/ 1 ri - rj I' for values of number at the inner radius ri is specified at 2.25 and
t = 0, 1, 2. The numerical computations shown in the the outer radius r, at 1.384 ri. Figure la shows the
next section were performed using t = 1. three sets of regular meshes used in the simulation.

c. Consistent mass reconstruction Figure lb provides the details of the spatial accuracy '
of each reconstruction scheme for this numerical ex-The common feature of the previous two recon- periment. The results indicate that the consistent-

struction schemes is that the estimate of the solution mass matrix reconstruction gives better results than
gradients relies only on next-neighbor information. it the other two in terms of both order of accuracy and
is apparent that information at points beyond near- absolute error.
est neighbor must be involved to get a more accu-
rate estimation of solution gradients. This can be Test case 2. Subsonic flow in a channel
achieved using the consistent mass matrix instead of The second test case presents an inviscid sub-
the lumped mass matrix in the Green-Gauss' recon- sonic flow in a channel with a 10% thick circular bump
struction scheme, i.e., on the bottom. The Mach number at the inflow is 0.1.

The solution is obtained using a second order scheme
M•Vu = R, (19) without any limiters. The mesh, which contains 839

grid points, 1,559 elements and 117 boundary points,
which, in fact, should have been used in the first place. is depicted in Fig. 2a. Figure 2b displays the com-
The consistent mass matrix was replaced by diagonal, puted velocity contours in the flow field obtained by I
lumped mass matrix only for computational expedi- the three different reconstruction schemes. Figure 2c
ency. As M, possesses an excellent condition number, shows the velocity distributions on the lower wall ob-
equation (19) is never solved directly, but iteratively, tained by the three reconstruction schemes. For com-
This is done using an iterative procedure of the form: parison purposes, we add the potential solution ve- I

locity distribution. Entropy distribution results are
Mi(7uk - Vukl) = R - McVuk-l, 1 < k < niter displayed in Fig. 2d. The results indicate that the

(20) consistent-mass reconstruction generates the least nu- 3
where Vu' denotes "the kth iterate. Typically, three merical entropy, and produces a virtually identical so-
passes are required to converge. The solution of equa- lution to the potential solution. The significant im-
tion (20) can also be obtained using an edge-based provement of the consistent mass reconstruction over

4
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IMPROVED ALE MESH VELOCITIES FOR MOVING BODIES

RAINALD LOHNER AND CHI YANG

GMU/CSI, George Mason University, Fairfax, VA 22030-4444, USA

SUMMARY

A Laplacian smoothing of the mesh velocities with variable diffusivity based on the distance from moving
bodies is introduced. This variable diffusivity enforces a more uniform mesh velocity in the region close to
the moving bodies. Given that in most applications these are regions where small elements are located, the
new procedure decreases element distortion considerably, reducing the need for local or global remeshing,
and in some cases avoiding it altogether.

KEY woRDs finite elements; moving grids; moving bodies; mesh velocity; ALE

1 1. INTRODUCTION

For any arbitrary Lagrangean-Eulerian (ALE) unstructured-grid field solver that considers
bodies or surfaces in relative motion to one another, a recurring question has been how to
specify the mesh velocity of the field points.' -1- In mathematical terms: given the velocity w on
the moving surfaces:

3 lW IroW 0, (1)

and, at a certain distance from these moving surfaces, as well as all the remaining surfaces, a
vanishing mesh velocity

w =0, (2)

find the spatial distribution of w such that element distortion is minimized. If this mesh velocity
distribution is not smooth, distorted elements will appear quickly, forcing many local or global
remeshings, with the ensuing loss of accuracy and increase in CPU requirements. Three families
of methods have been used to specify the mesh velocity:

* (a) Analytic user-prescribed functions,
(b) Smoothing of coordinates, and
(c) Smoothing of velocities.

In the first case, the mesh velocity is prescribed to be an analytic function of the distance from

the surface. Efficient distance-from-body search algorithms are nowadays common, 11-14 albeit
scalar. Given the distance from moving surfaces 6, and the point on the surface closest to it
xI F, the mesh velocity at any field point is given by

W = w(x Ir)f(6). (3)

CCC 1069-8299/96/100599-10 Received 24 October 1995
© 1996 by John Wiley & Sons, Ltd. Revised 11 March 1996
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The function f(6) assumes the value of unity for 6 = 0, and decays to zero as 6 increases. This I
makes the procedure somewhat restrictive for general use, particularly if several moving bodies
are present in the flowfield. On the other hand, the procedure is extremely fast if the initial
distance 6 can be employed for all times.6'8"I

In the second case, the edges of the unstructured grid are treated as springs that are relaxed in time
to achieve equilibrium. In this way, a uniform element distribution is maintained. Starting from the
prescribed boundary velocities, a new set of boundary coordinates is obtained at the new time step:

X n+1 IF = xn 1r + At W Ir. (4)

Based on these new values for the coordinates of the boundary points, the mesh is smoothed.
Although more sophisticated mesh smoothing techniques have been proposed, 0 by far the most
common way to smooth this new mesh is via spring analogy relaxation.3'7 The force exerted by
each spring (edge) is a function of its length and acts along its direction. Therefore, the sum of
the forces exerted by all springs surrounding a point can be written as I

nsi

fi = Z C(I Xy - Xi 1)(xi - xi), (5) 5
j=l

where c denotes the spring function, xi the coordinates of the point, and the sum extends over
all the points surrounding the point. At the surface of the computational domain, no movement
of points is allowed, i.e. Ax = 0. The new values for the coordinates are obtained iteratively via a I
relaxation or conjugate gradient scheme.3 ,

7 Once the new coordinates have been evaluated, the
mesh velocity is computed from I

w =--(x÷ -_x'). (6)
At

Most of the potential problems that may occur for this type of mesh velocity smoothing are due 1
to initial grids that have not been smoothed. For such cases, the velocity of the moving
boundaries is superposed to a ficticious mesh smoothing velocity which may be quite large
during the initial stages of a run. Moreover, for spring analogy smoothers there is no guarantee
that negative elements will not appear.

In the third case, the mesh velocity is smoothed directly, based on the exterior boundary
conditions given by (1), (2). The aim, as stated before, is to obtain a mesh velocity field w in
such a way that element distortion is minimized. Consider for the moment the 1-D situation a
sketched in Figure 1. At the left end of the domain, the mesh velocity is prescribed to be w0. At

I
w I

0I I
Xo X, X

Figure 1. Mesh velocity smoothing in 1-D
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I the right end, the mesh velocity vanishes. If the mesh velocity decreases linearly, i.e.

aw-• = &v, (7)I ~ax
then the elements will maintain their initial size ratios. This is because for any two elements the
change in size 6h during one time step is given by

6h = (w2 -w1 )At = Aw At. (8)

This implies that for the size ratio of any two elements i, j we obtain

Ihi n+ 1 hiln+AwiAt = hiIn+g-hilnAt =hi - n,

h-- hj l+AWjAt hj[`+ghjnAt h(7)

i.e. all elements in the regions where mesh velocity is present will be deformed in roughly the
same way. Solutions with constant gradients arc reminiscent of Laplacian operators, and indeed,
for the general case, the mesh velocity may be obtained by solving

VkVw = 0, (10)

with the Dirichlet boundary conditions given by (1), (2). This system is discretized using finite
element procedures. The resulting system of equations can be solved in a variety of ways, e.g.
via relaxation as

Ci" Aw'= -At Ki"(w'- w-), (11)

I where

c= '_jKgY, (12)I i*j

and the optimal At-sequence is given by

Ati= 1 / ], i=1,n. (13)

1 + cos - 1J

3 If the diffusion coefficient appearing in (10) is set to k= 1, a true Laplacian velocity smoothing is
obtained. This yields the most 'uniform deformation' of elements, and therefore minimizes the
number of remeshings or remappings required. Alternatively, for element-based codes, one may
approximate the Laplacian coefficients Ki" in (11) by

V2w _ - (M1 - Mc)w, (14)

where M,, M, denote, respectively, the lumped and consistent mass matrices.This
approximation is considerably faster for element-based codes (for edge-based codes there is no
difference in speed between the true Laplacian and this expression), but it is equivalent to a
diffusion coefficient k = h2. This implies that the gradient of the mesh velocity field will be larger
for smaller elements. These will therefore distort at a faster rate than the larger elements.
Obviously, for uniform grids this is not a problem, but in many cases the smallest elements are
close to the surfaces that move, prompting many remeshings.

Based on the previous arguments, one may also consider a diffusion coefficient of the form
k = h -P, p > 0. In this case, the gradient of the mesh velocity field will be larger for the larger

I
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y I

WI

A 
3

z

Figure 2. 1-D movement of face A 3
elements. The larger elements will therefore distort at a faster rate than the smaller ones - a 3
desirable feature for many applications.

To see more clearly the difference between mesh velocity and coordinate smoothers,
consider the simple box shown in Figure 2. Suppose that face A is being moved in the x-
direction. For the case of coordinate smoothing, there will, in all likelihood, appear mesh U
velocities in the y- and z-directions. This is because, as the mesh moves, the smoothing
technique will result in displacements of points in the y- and z-directions, and hence velocities
in the y- and z-directions. On the other hand, for the case of mesh velocity smoothing, only I
displacements in the x-direction will appear. This is because the Dirichlet boundary conditions
given by (1), (2) do not allow any mesh velocity other than in the x-direction to appear. We
consider this an advantage of mesh velocity smoothers, and have therefore pursued them from
the outset.

2. VARIABLE DIFFUSIVITY LAPLACIAN SMOOTHING 5
In most practical applications, the relevant flow phenomena and associated gradients of density,
velocity and pressure are on or close to the bodies immersed in the fluid. Hence, the smallest
elements are typically encountered close to the bodies. A straightforward Laplacian smoothing I
of the mesh velocities will tend to distort the elements in these critical regions. Thus, the small
elements in the most critical regions tend to be the most deformed, leading to a loss in accuracy
and possible reinterpolation errors due to the high rate of remeshings required. In an attempt to
mitigate this shortcoming, we propose a diffusion coefficient k that is based on the distance 6
from the moving bodies. In general, k should be a function of 6 as sketched in Figure 3. For
small 6, k should be large, leading to a small gradient of w, i.e. nearly constant mesh velocity
close to the moving bodies. For large 6, k should tend to unity in order to ensure the most 3
uniform deformation of the (larger) elements that are away from the bodies.

2.1. Distance evaluation i
The calculation of the distance 6 can be carried out in a variety of ways. Scalar, optimal

search procedures have been employed within grid generation and turbulence modelling,' 1-14

but for purposes of parallelization we prefer the Laplacian-based distance evaluation detailed

I
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3kI

10

Figure 3. General shape for desired diffusivity k

I here. Consider the 1-D Poisson problem:

6"" =-s; 6(0)=O0; 6(5..'1O. (15)

The exact solution is given by

6=sx I- ), (16)

implying

P a_'=10 6,xO= ý2s6 . (17)

This means that in order to obtain a unit gradient at x=0, one should choose s=1/261, which in
turn leads to x, = 261. Another way to interpret the results is that the 'rigidization' distance x1 is
related to the maximum value of 6 = 6, and the source strength s.

This simplified analysis is not valid for 2-D and 3-D solutions of the general Poisson problem
V26 = - S; 6 [to = 0; (' -, IF, = 0, (18)

where for radial symmetry the solutions contain ln(r) and 1/r terms. On the other hand, we do
not require the exact distance from moving bodies, but only a distance function that will give
the proper behaviour for k. We therefore use (18) to determine the distance function 6. The
Poisson problem is solved using finite element procedures and an iterative procedure similar to
that given by (11)-(13) above. This fits naturally into existing CFD codes, where edge-based
Laplacian operator modules exist for artificial or viscous dissipation terms. The Neumann
condition in (18) is enforced by not allowing 6 to exceed a certain value. After each iterative
pass during the solution of (18), we impose

I• 1 (19)

which in effect produces the desired Neumann boundary condition at F.

2.2. Diffusivity as a function of distance

As stated before, for small 6, k should be large, leading to a very small gradient of w, i.e.
nearly constant mesh velocity close to the moving bodies. For large 6, k should tend to unity in
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kI
k.
0

I

81 8u

Figure 4. Diffusivity as a function of distance

order to ensure the most uniform deformation of the (larger) elements that are away from
the bodies. For the diffusion k, we use the following constant-linear-constant function (see
Figure 4): (

k = k0 + (I - ko)max:0 min 1, (20)t]"

The choice of the cut-off distances is, in principle, arbitrary. We have found 61 = x,/4, 6. = x1/2
to be a good choice.

3. EXAMPLES

The procedure outlined above has been used extensively within an unstructured-grid, edge-based
ALE CFD code.9 The usefulness of changing k according to the distance as given by (20) is
demonstrated on a moving wing as well as a hypersonic store release case computed recently.

I
I
I

!
I

Figure 5. Outline of wind after 0, 30 and 100 time stepsI
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1 3.1. Wing

A moving wing is first considered using both Laplacian (k0 = 1, x, =0) and modified
Laplacian (k0 = 100, x, = 2) velocity smoothing. Figure 5 shows the outline of the wing afterI 0, 30 and 100 time steps. The surface grids and mesh velocities obtained using the two
methods after 30 time steps are shown in Figures 6 and 7. As a result of the larger gradient of
the mesh velocity field, the meshes in the vicinity of the wing start becoming distorted in the
case of Laplacian velocity smoothing, and the first negative element appears after 34 time
steps. On the other hand, for the modified Laplacian velocity smoothing the meshes in the
vicinity of the wing remain undistorted, and no remeshing is required even after 100 time

(a) (b)I
I
U
I

I Figure 6. Surface mesh after 30 time steps: (a) Laplacian velocity smoothing; (b) modified Laplacian velocity
smoothing

I (a)

Figure 7. Surface mesh velocity after 30 time steps: (a) Laplacian velocity smoothing (Al v = 0.05); (b) modified
Laplacian velocity smoothing (A I v = 0.05)
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(a) (b) 3
I

II

S~I

Figure 8. Surface mesh after 100 time steps (modified Laplacian velocity smoothing)

(a) (b)

Figure 9. (a) Surface mesh velocity after 100 time steps (AJ v = 0.05); (b) distance function (Ab 0-05); (modified I
Laplacian velocity smoothing)

I
steps. The surface grid and mesh velocity, as well as the distance function after 100 time
steps are shown in Figures 8 and 9, respectively. 3
3.2. Hypersonic store release

As a second, more realistic case, we consider a hypersonic store release. From a given state,
we followed the solution for 100 time steps, setting in the first case k0 -- 1, x, = 0, and in the
second case k0 = 50, x, = 0.08. The surface grids and mesh velocities obtained after 100 time
steps are displayed in Figures 10 and 11. As one can see, the new variable k mesh velocity
smoothing leads to a much less deformed grid close to the moving missile. For this case, the

I
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I(a) (b)

I

Figure 10. Surface mesh after 100 time steps: (a) Laplacian velocity smoothing; (b) modified Laplacian velocity
smoothing

5 (a) (b)

Figure 11. Surface mesh velocity after 100 time steps: (a) Laplacian velocity smoothing; (b) modified Laplacian
velocity smoothing

number of local remeshings required dropped by a factor of 1: 4, leading to considerable CPU
I savings in a multiprocessor environment.

4. CONCLUSIONS

A Laplacian smoothing of the mesh velocities with variable diffusivity based on the distance
from moving bodies has been found effective for unstructured-grid ALE solvers. The variable
diffusivity enforces a more uniform mesh velocity in the region close to the moving bodies.
Given that in most applications these are regions where small elements are located, the new
procedure decreases element distortion considerably, reducing the need for local or global
remeshing, and in some cases avoiding it altogether.

As the mesh movement is linked to a time-stepping algorithm for the fluid part, and the body
movement occurs at a slow pace compared to the other wavespeeds in the coupled fluid/solid
system, normally no more than five steps are required to smooth the velocity field sufficiently,
i.e. 3 <_ n <_ 5 in (11). The overhead incurred by this type of smoothing is very small compared to
the overall costs for any ALE-type methodology for Euler or Navier-Stokes flow solvers.
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plinary codes. We have found that for these classes of problems.,
Several search algorithms for the interpolation of data associated interpolation can take a non-negligible portion of total CPU-

with unstructured grids are reviewed and compared. Particular em- time, especially for large applications running on multiproces-I phasis is placed on the pitfalls these algorithms may experience sor vector-computers.
for grids commonly encountered and on ways to improve their In the following, we will concentrate on the fast interpolation
performance. It is shown how the most CPU-intensive portions of
the search process may be vectorized. A technique for the proper between different unstructured grids that are composed of the
interpolation of volumetric regions separated by thin surfaces is same type of elements. In particular, we will consider linear
included. Timings for several problems show that speedups in ex- triangles and tetrahedra. The ideas developed are general and
ess of 1 :5 can be obtained if due care is used when designing can be applied to any type of element and grid. On the other

interpolation algorithms. © 1995 Academic Press, Inc. hand, other types of grids (e.g., cartesian structured grids) will

lend themselves to specialized algorithms that may be more
1. INTRODUCTION efficient and easier to implement.

The remainder of the paper is organized as follows. Section

The need to interpolate quickly the fields of unknowns from 2 describes the basic algorithm used to decide if a point of the

one mesh to another is common to many areas of computational unknown grid is inside an element of the known grid. Sections
mechanics and computational physics. The following classes 3-5 consider the fastest possible algorithms, given the amount
of problems require fast interpolation algorithms: of information available; brute force if only one point needs

to be interpolated (Section 3), octree search for groups of points
(a) Simulations where the grid changes as the solution (Section 4), and the fastest known vicinity algorithm (Section

proceeds. Examples of this kind are adaptive remeshing for 5). These algorithms are combined in Section 6, yielding thesteady-state and transient simulations [1-3], as well as remesh- fastest grid-to-grid algorithm, an advancing front vicinity algo-

ing for problems where grid distortion due to movement be- rithm. We then focus on the main innovations of the present
comes too severe [4, 5]. paper: ways of improving robustness and speed by minimizing

S (b) Loose coupling of different codes for multi-disciplinary brute-force searches at comers and edges, vectorization of the
applications. In this case, if any of the codes in question are interpolation procedure, and techniques to interpolate properly
allowed to perform adaptive mesh refinement, the worst volumetric data separated by thin surfaces. Section 9 presents
case scenario requires a new interpolation problem at every some timings, showing the considerable speedups obtained
timestep. by the proposed approach. Finally, some conclusions are

drawn.
(c) Interpolation of discrete data for the initialization orE continuous update of boundary conditions. Common ex-

amples are meteorological simulations, as well as climatologi- 2. THE BASIC ALGORITHM
cal and geotechnical data for seepage and surface flooding
problems. Consider an unstructured finite element or finite volume

I (d) Visualization. This large class of problems makes ex- mesh, as well as a point p with coordinates xp. A straightforward
tensive use of interpolation algorithms, in particular for the way to determine if the point p is inside a given element el is

comparison of different data sets on similar problems. to determine the shape-function values of p with respect to the
coordinates of the points belonging to el:

The main reason that prompted us to revisit the search and
interpolation problem was the second class of applications. We (1)
are currently developing a series of loosely coupled multidisci- Xp 3 N'x.(

I 380
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have not yet been interpolated are given as a starting guessI t__b END-ELEMENT and stored in a list of "front" points
LISTFRONTPOINTS. The next point to be interpolated is
then drawn from this list, and the procedure is repeated until

eEST olteall points have been interpolated. The procedure is sketched in
Fig. 6, where the notion of "front" becomes apparent. The

complete algorithm may be summarized as follows:3 A. 1. Form the list of elements adjacent to elements for the
Boundary given mesh:

FIG. 5. Failure of nearest neighbour search algorithm. A.2. Form the list of points surrounding points for the un-
S~known grid;

A.3. Mark points of the unknown grid as untouched
A.4. Initialize list of front points LISTFRONTPOINTS

* outperform all other ones. The neighbour-to-neighbour search for unknown grid
algorithm may be summarized as follows: A.5. DO: For every non-interpolated point

N.0. Form the List of Elements Adjacent to Elements for The NONINTERPPOINT
Given Mesh; A.5. From LISTFRONTPOINTS:

A.6. Obtain starting element STARTELEMENT in
N. 1. DO: Loop over the points to be interpolated known grid
N.2. Obtain good starting element START-ELEMENT; A.7. Attempt nearest neighbour search for NTRY at-
N.3. For START-ELEMENT: Evaluate Ni from Eq. (4); tempts;
N.4. IF: Criterion (5) is satisfied THEN - IF unsuccessful: use brute force

Exit
ELSE

Set: STARTELEMENT to neighbour associated Step 1 Step 2

with min(N'); - - - / ,
GOTO N.3 - / "

ENDIF //

ENDDO -

The neighbour-to-neighbour algorithm performs very well /2

in the domain, but it can have problems on the boundary. ---
Whereas the brute-force and octree search algorithms can ,,/I "jump" over internal or external boundaries, the neighbour-to-/ / V

neighbour algorithm can stop there (see Fig. 5). Its performance
depends heavily on how good a guess the starting element -Obtain First Point -Interpolate Front Points

START-ELEMENT is; it can be provided by bins, octrees, or - Otain Active Front of Close Points -Update Active Front of Close Points

alternate digital trees. On the other hand, due to its scalar nature,
such an algorithm will not be able to compete with the octree Step 3...

search algorithm described in Section 3. Its main use is for
point-to-grid or grid-to-grid transfer, where a very good guess

noit-o-ri *F-.- Known Grid
for START-ELEMENT may be provided. This fastest grid-to- nknown Crid

grid interpolation technique is described in the next section. A- Frown

6. FASTEST GRID-TO-GRID ALGORITHM: VECTORIZED 7

ADVANCING-FRONT VICINITY /

3 The crucial new assumption made here, as opposed to all / I

the other interpolation algorithms described so far, is that the
points to be interpolated belong to a grid and that the grid -5I connectivity (e.g., the points belonging to each element) is given - Interpolate Front Points

as input. In this case, whenever the element END-ELEMENT of - Update Active Front of Close Points

the known grid into which a point of the unknown grid fallsE is found, all the surrounding points of the unknown grid that FIG. 6. Advancing front vicinity algorithm.

U
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Known Grid 1t is advisable to form two front lists, one for the interior points5
-- 0 Unknown Grid and one for the boundary points. The interpolation of all the t m

interior points is attempted first, and only then are the boundary
points interpolated. This procedure reduces drastically the num-
ber of brute-force searches required for the complex boundary i
cases listed above. This may be seen from Fig. 8, where the
brute-force at the corner was avoided by this procedure. As
before, knowledge of the boundary points is required for this im-
provement.

FIG. 7. Problems at concave boundaries. 6.3. Vectorization 3
The third possible improvement is vectorization. The idea

- IF unsuccessful: stop or skip is to search for all the points on the active front at the same .
=:ENDELEMENT time. It is not difficult to see that for large 3D grids, the vector-

A.8. Store shape-functions and host elements lengths obtained by operating in this manner are considerable.
A.9. Loop over points surrounding leading to very good overall performance. To obtain a vec-

NONINTERPPOINT: torized algorithm we must perform steps N.3, A.7 as described
- IF: point has not been marked: above in vector mode executing the same operations on asU

- Store END-ELEMENT as starting ele- many uninterpolated points as possible. The obstacle to this
ment for this point; approach is that not every point will satisfy criterion (5) in

- Include this point in front the same number of attempts or passes over the points to be
LISTFRONTPOINTS; interpolated. The solution is to reorder the points to be interpo-

ENDIF lated after each pass such that all points that have as yet not
A. 10. Mark point NONINTERPPOINT as interpolated 3

ENDDO

A.11. IF: LISTFRONT-POINTS not empty: GOTO A.5

Several possible improvements for this algorithm, layering Nearest Neighbour Algorithm Will Fail Here 3
of brute-force searches, inside-out interpolation, and vectoriza-
tion, are detailed in the following.

6.1. Layering of Brute-Force Searches 5
In most instances (the exception being grids with very large

disparity in element size where NTRY attempts are not suffi-
cient), the neighbour-to-neighbour search will only fail on the U
boundary. Therefore, whenever a brute-force search is required,
it is advisable to test first the elements connected to the bound- /_
ary. This will reduce the brute-force search times considerably. 1 2 3 Boundary
Note, however, that we have to know the boundary points in
this case. In the present case, the elements of the known grid By Interpolating Volume Points First, The Problem Is

are renumbered in such a way that all elements with three or -- Avolided
more nodes on the boundary in 3D and two or more nodes
on the boundary in 2D appear at the top of the list. These I
NR BOUNDARY ELS < NELEM elements are scanned first
whenever a brute-force search is required. Moreover, after a 4
front has been formed, only these elements close to boundaries
are examined whenever a brute-force search is required. 3

6.2. Inside-Out Interpolation 3
This improvement is directed towards complex boundary

cases. We group under this category cases where the boundary
has sharp concave comers or ridges, or those cases where, due Boundary I
to the concavity of the surface points, the boundary may be
close but outside of the known grid (see Fig. 7). In this case, FIG. 8. Avoiding brute-force searches during interpolation. i
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I triangles and tetrahedra as the starting point for improvements in
performance. These improvements depend on the assumptions
one can make with respect to the grids employed and the

oint to be interpolated information available.

3. FASTEST 1-TIME ALGORITHM: BRUTE FORCE

Suppose we only have a given grid and a single point p with
coordinates x,. The simplest way to find the element into which
point p falls is to perform a loop over all the elements, evaluating3their shape-functions with respect tox:

FIG. 1. Possible non-uniqueness for interpolation on bricks. -DO: Loop over all the elements
- Evaluate Ni from Eq. (4);
- IF: Criterion (5) is satisfied:

For triangles in 2D and tetrahedra in 3D, we have, respectively, ENDIF

i wo equations for three shape-functions and three equations for ENDDO

tour shape-functions. The sum-property of shape-functions.,
Because the central loop over all the elements can readily be

N = 1, (2) vectorized this algorithm is extremely fast. We will use it in
more refined algorithms both as a start-up procedure, as well
as a fall-hack position.

yields the missing equation, making it possible to evaluate the
shape-functions from the following system of equations: 4. FASTEST N-TIME START ALGORITHM:

OCTREE SEARCH

1 N2 Suppose that, as before, we only have a given grid, but.

= 1 N3, (3) instead of just one point p, a considerable number of points[•']" •has 

to be interpolated. 
In this case. the brute-force algorithm

f IN4 described before will possibly require a complete loop over the

elements for each point to be interpolated, and, on average, a

or. in concise matrix notation, loop over half the elements. A significant improvement in speed
may be realized by only checking the elements that cover the

x = XN-- N = X-'x,. (4) immediate neighbourhood of the point to be interpolated. A

Then, the point p is in element el iff (see Fig. 2):

-Bins, i.e., the superposition of a cartesian mesh [7, 8],
min(N, 1 - N) -- 0, Vi. (5) -Octrees, i.e., the superposition of an adaptively refined

cartesian mesh [9, 10], and
For other types of elements more nodes than equations are -Alternate digital trees [11].encountered. The easiest way to determine if a point is inside

an element is to split the element into triangles or tetrahedra We consider octrees here, as bins perform poorly for prob-
and evaluate each of these sub-elements in turn. If the point lems where the nearest-neighbour distances vary by more than
happens to be in any of them, it is inside the element. This two orders of magnitude in the domain. One may form an
procedure may not be unique for highly deformed bricks, as octree with the element centroids or points. In the present case,
S shown in Fig. 1. Depending on how the diagonals are taken we chose the latter option, as for tetrahedral grids the number
for the face A-B-C-D, the point to be interpolated may or may of points is significantly less than the number of elements. The
not be inside the element. Therefore, subsequent iterations may octree search algorithm then proceeds as follows:S be required for bricks or higher-order elements with curved
boundaries. Other ways to determine if a point is inside a - Form the octree for the points of the given mesh;
bilinear element may be found in [6]. - Form the list of elements surrounding points for the

In the following, we will use the algorithm outlined above for given mesh;

U
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a
a * 0 0fnt to be Interpolated !

Stosest Point of Known Grid

l___0 __ ___ 1
SBoundary I

Point to be
Interpolated

0 osost Point of Known Grid

"" -0

FIG. 3. Possible problems with closest point algorithm: (a) boundary gap:

(b) distorted elements. 3
0 0

0 i(obtaining the close points and elements), but all other stages
0 may be vectorized. The vector lengths obtained for 3D grids I
o 0 0 •are generally between 12 and 50, i.e., sufficiently long for

good performance.

FIG. 2. Possible ways of subdividing space: (a) bins; (b) quadtree (octtree); 5. FASTEST KNOWN VICINITY ALGORITHM:

(c) alternate digital tree. NEIGHBOUR-TO-NEIGHBOUR

Suppose that, as before. we only have a given grid and a I
- DO: Loop over the points to be interpolated considerable number of points need to be interpolated. More-

- Obtain close points of given mesh from the octree; over, assume that for any given point to be interpolated, an

- Obtain the elements surrounding the close points; element of the known grid that is in the vicinity is known. In I
- DO: Loop over the close elements: this case, it may be faster to jump from neighbour to neighbour

Evaluate N' from Eq. (4); in the known grid, evaluating the shape-function criterion [12]

IF : Criterion (5) is satisfied: (see Fig. 4). If the element into which x falls can be found in I
Exit a few attempts (<10), this procedure, although scalar, will

ENDIF

ENDDO

- IF: We have failed to find the host element:
Use brute-force over the elements Starting Element

ENDDO (IESTA) 3
Several improvements are possible for this algorithm. One Point to beS~interpolated

may, in a first pass, evaluate the closest point of the given mesh

to x, and only consider the elements surrounding that point.

Should this pass, which in general is successful, fail, the ele-
ments surrounding all the close points are considered in a second
pass. Should this second pass also fail (see Fig. 3 for some

pathological cases), one may either enlarge the search region, I
or use the brute-force algorithm described above in Section 2.
The octree search algorithm is scalar for the first (integer) phase FIG. 4. Nearest neighbour jump algorithm. I

I
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Outside

In2 Domain I
D 12 Surface 1

El Surface 2

1. Domain 2

113I "FIG. 10. Thin surface separating volumetric data.

Inside

3 FIG. 9. Measuring surface concavity, number of boundary points. A considerable reduction of brute-
force searches may be attained if the concavity of the surface
can be measured. Assuming the unit face-normals n to be
directed away from the domain, a possible measure of concavity

found their host element are at the top of the list. Such an is the visibility of neighbouring faces from any given face.
algorithm proceeds in the following fashion: With the notation of Fig. 9, the concavity of a region along

0 Sthe boundary may be determined by measuring the normal
V.0. Set the remaining number of points NRREMAINING distance between the face and the centroids of the neighbouring

POINTS is-NRFRONTPOINTS, where NRFRONT_ faces. The allowable distance from the face for points to be
POINTS is the total number of points to be interpolated interpolated is then given by some fraction a of the minimum* on the current front.

m distance measured:
V.1. Perform steps N.3, A.7 in vector mode for all remaining

points NRREMAININGPOINTS. d = aImin(0, n. (x0 - xe)). (6)

V.2. Write the NRNEXTPOINTS points that do not satisfy
criterion (5) into a list LISTOFCURRENTPOINTS Typical values for a are 0.5 < a < 1.5. If a neighbour-to-
(1: NRNEXTPOINTS). If NRNEXTPOINTS= 0: neighbour search ends with a boundary face and all other shape-
stop. functions except the minimum satisfy Eq. (5), the distance of

V.3. Write the NRREMAININGPOINTS - NRNEXT_ the point to be interpolated from the face is evaluated. If this
POINTS points that do satisfy criterion (5) into distance is smaller than the one given by Eq. (6), the point is
LIST - OF-CURRENT- POINTS(NR_ NEXT- POINTS accepted and interpolated from the current element. Otherwise,
+ 1 : NRREMAININGPOINTS). a brute force search is conducted. The application of this proce-

V.4. Reorder all point arrays using LISTOFCURRENT_ dure requires some additional arrays, such as face-arrays, a

POINTS. In this way, all points that have not yet found distance-array to store the concavity, and the relation between
their host element are at the top of their respective lists element faces and the face-array.
(locations 1 : NRNEXTPOINTS).

V.5. Set NRREMAININGPOINTS=NR-NEXT-POINTS 8. VOLUMETRIC DATA SEPARATED BY
and go to V.I. THIN SURFACES

One can reduce the additional memory requirements associ- The interpolation of volumetric data for regions separatedD ated with indirect addressing by breaking up all loops over the by thin surfaces is commonly encountered in computational
NRREMAININGPOINTS remaining points into subgroups. physics. Examples for problems of this kind are flow simula-
This is accomplished automatically by using scalar temporariesE on register to register machines. For memory to memory ma- 23

chines, a user-specified maximum group vector length must I I 34 Domain I
be specified.

7. CONCAVE SURFACES 'e\ C A A Surface2
C3

For concave surfaces, criterion (12.5) will not be satisfied Domain 2

for a large number of surface points, prompting many brute- FIG. 11. Comparison of face and point normals. Note. IJ: normal of face
force searches. The algorithmic complexity of the interpolation IJ; : normal of point I.U procedure could potentially degrade to O(N2), where N, is the

3
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U
~II

- I

N I
FIG. 12. Surface grids for a cube: NELEM 34,661 (left); NELEM = 160,335 (right). 3

tions with thin separating sheets, such as trailing edges of of these normals falls below a preset tolerance (e.g., -0.5).
wings, parasols, sails, airbags, shells, and others. In many the host element is rejected, and a brute search is performed.
of these cases, the surface points belonging to one of the The surface point normals are obtained by averaging the
two sides may lie inside an element that is attached to the normals of the faces surrounding them. While averaging, a
other side. The situation is sketched in Fig. 10. Point A, comparison of the normals for all the surrounding faces is
although inside element El, i.e., satisfying Criterion 5, should conducted. If these normals differ substantially, an edge or
be interpolated from element E2. In order to avoid such an comer is detected, and the points are marked accordingly.
erroneous interpolation, the surface normals of the faces of For these points, the surface normal is considered as undefined.
the known grid are compared with the point normals of the and no comparison of surface normals is conducted. The
points to be interpolated (see Fig. 11). If the scalar product alignment test for surface normals just described can be

F
I
I

I

FIG. 13. Surface grids for a train: M'ELEE 180,670 (left); MELEE = 243,068 (right). 3
I
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I ABSTRACT

We present a loosely coupled algorithin to coinbine Comiputational Fluid Dynamics (CFD) and Compu-
tational Structural Dynanmics (CSD) codes in order to solve, in a cost-effective manner, fluid-structure

interaction problems. The basic fluid and structural dynamics codes are altered as little as possible. The
structure is used as the 'master-surface' to (leline the extent of the fluid region, and the fluid is used as the
I 'master-surface' to define the loads. The transfer of loads, displacements, and velocities is carried out via

fast interpolation and projection algorithims. As shown, this fluid-structure algorithum can be interpreted as
an iterative solution to the fully-coupled, large matrix problem that results from the discretization of the

complete problem. Results from practical shock-structure interaction problems indicate that the proposed

approach offers a convenient and cost-effective way of coupling CFD and CSD codes without a complete
re-write of theii.

1. INTRODUCTION structures and flowfields are interacting strongly,

Both Computational Fluid Dynamics (CFD) and and, in iuost cases, ion-linearly.

Coniputational Structural Dynanuics (CSD) have Most of these problems are presently solved either

reached a high degree of reliability for the simulation iteratively, i.e. making several cycles of'CFD run fol-

of practical engineering problems. This has in turn lowed by CSD run', or by assuming that the CFD

led to widespread acceptance and aii increase iil user- and CSD problem can be decoupled 'to first order*.

friendliness for tile codes most often used [1]. There In most of the airframe manufacturing companies. as

exist large classes of important eugineering problenis well as the shipyards, the respective CFD and CSD

that require the concurrent application of CFD and runs are perfornmed in different divisions, leading to

CSD techniques. Some examples are: time-delays, loss of information, and, most inupor-

- Deformation or inflation of fabrics (parachutes. tantly, loss of insight.

airbags, parasols, tents, etc.), The need to solve fluid-structure interaction problems
has prompted a number of developments in this field

-Aeroelasticitv of flexible structures (thin, high- in recent years. The best way to sort these efforts is by
aspect ratio wings, imissiles, drones, etc.), where classifying them according to the physical and niouer-
the deformation due to aerodynamic forces is ical complexity employed for the fluid and structure

Ssuch that signimficant changes in the flowfield are respectively (see Figure 1). For the fluid, the PDEs

induced, leading to different loads. solved are, in increasing order of physical complexity:

Shock/Structure Interaction, where the deforma- Fl. Laplace/Ilelnlioltz Operators (inviscid, irrota-
tion of the structure may change the flowfield and tional . isentropic flow),
the corresponding loads, F2. Non-Linear Laplace Operators (inviscid, irrota-

- Ilypersonic Flight, where the deformation of tional flow),
the structure due to aerodynamic and aerother- F3. Euler Equations (inviscid flow),
m1al loads is such that a significant variation of F4. Reynolds-Averaged Navier-Stokes Equations
the flowfield takes place (shock location, surface (viscous, time-averaged flow),
heating, etc.), and F5. Large-Eddy Simulations (viscous flow with

- Variable Geometry Vehicles, where the change spatio-temporal cut-off), and

of geometry implies a transient phase in which F6. Navier-Stokes Equations.

Copyright ®1995 by the authors. Published by the I
American Institute of Aeronautics and Astronautics.
Inc. with permission.
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Each of these approximations requires between one iminiediatelv with the Euler and Reynolds-averaged
and two orders of magnitude more ClTU-tiine and Navier-Stokes equations for the fluid, and the non-
memory than the preceding one. For the linear linear. large-deformation equations for the structure.
case, boundary element methods may be employed, Given that the geometrical complexity of the prob- U
whereas all other approximations are typically ap- lems targeted for simulation can be severe, and tlhe
proximated on a grid with spatial discretizations ob- deformation considerable, automatic grid generation
tained from Finite Difference, Finite Volume, Finite is a prime requirement. For this reason, unstructured I
Element, or Spectral Element techniques. grids are employed for both the fluid and the struc-
For the structure, the PDEs solved are, in increasing ture. The elements used for the fluid are tetrahedral.
order of physical complexity: whereas the elements for the structure are tvplically I
SI. 6 Degrees of Freedom Integration (rigid body), bricks.
S2. Linear Elastic Models, either through

a) A Modal Decomposition. or The remainder of the paper is organized as fol-
b) A Finite Element Discretization. lows: Section 2 describes the coupling strategy used.

S3. Elasto-Plastic Models, and The main layout of a code based on the loose cou-
$4. Elasto-Plastic Models with Contact. Rupture, pling algorithm is described in Section 3. The in-

etc. dividual codes chosen, FEFLO96 for the fluid. aid I
As before, each of these approximations requires be- DYNA3D for the solid region, are briefly described

tween one and two orders of magnitude more CPU- in Section 4. Sections 5-8 discuss fast interpolationi,
time and memory than the preceding one. For struc- unwrapping of doubly defined faces, surface track-
tures. the spatial discretization is typically carried out ing, and load transfer techniques. In Section 9, some
using Finite Element techniques [2]. demonstration runs are shown. Finally, conclusions
A major characteristic of fluid-structure algorithms and an outlook for future development are given in
is the requirement to combine the discretizations for Section 10.
the fluid and the structure. This provides a third
classification item (see Figure 2): 2. COUPLING ALGORITIIM
T1. Same surface discretization:
T2. Different surface discretization coupled via: When trying to compare the possible coupling algo-

a) Interpolation, rithims, it is useful to start from the basic discrete
b) Least-Squares, equation systems obtained for the solid and fluid re- I
c) Lagrange Multipliers, gions. For the solid region, we obtain, from a given
d) A Third, so-called 'Virtual' Surface Grid. Finite Element discretization, a system of equations

For the simple CSD approximations SI,S2a, there is of the form:
no discretization of the structure per se, so that the
transfer of ilmformmation between fluid and structure is dv,
straight forward. dt (1)
With this series of possibilities, we are now in a po- Isition to classify previous fluid-st ructure interaction where M, v, D, K.f denote, respectivey, lie

work. '[he two classic fields of structural acoustics mass-matrix, velocity vector, damping nmatrix. stiff-

and aeroelasticity have seen the largest amount of ac- ness miatrix, displacement vector and the loads ve(- I
tivity, particularly in those instances where the fluid tor. By splitting the degrees of freedomi into those
and the structure were assumed as linear (inviscid. touching the fluid region ('sf'), and the remaining
irrotational, isentropic fluid, and linear elastic struc- ones. we obtain

ture). Of the many references, we mention:
F1-S2b-T1: see Everstine [3,4] fM,f 01 d (v 8 1 )=
F1-S2b-TI: see .Jackson and Christie [5] 0 M, " dt \ v,
F2-S2a: see Batina et al. [6]
F4-SI: see, e.g. Alonso et al. [7] i
F3-S2a: see Guruswani d [8], Rausch et al. [9] (2)
F3-S2b-TI: see eloschiitsci ad Quackenbush [10][f1
F4-S2b-T1d: see Felker [11] where the superscripts i, e denote internal (stiffness,
F4-S2b-T2d: see Guruswamy and Byun [12] damping) and external forces respectively, L is the •

The present effort is directed towards practical non- load matrix and sf, the fluid stresses (pressures. shear
linear applications, in particular structures that un- stresses) on the surface. For the fluid region, we ob-
dergo severe deformations due to aerodynamic or tain, from a given Finite Element discretization, a
aero-therlnodynanuic loads. For this reason, we start system of equations of the form:

2
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a transfer of variables at the interface. The most coin-
mon way of realizing this approach is by selecting a

Mf 0 0 0 p 'mnaster surface' for a certain variable, and interpolat-
0 Mf 0 0 d s ing or projecting the variable to the other domain at
0 0 M! 0 "d- vf the beginning of the next timestep. For CFD/CSD

S0 0 0 Mfs V, problemns, the most natural combination is to select.
the CSD surface location and velocity as the 'master-

Si f e grid' for displacements, and the CFD grid as the
r (fP 'master-grid' for the loads (pressures, shear-stresses).

+ (3) The product of displacement times load yields work.I~, (ft making the combination physically appealing. '[his
wfhei approach may be regarded as an iterative solution of

where, for the sake of clarity, we have employed time the combined system given by Eqn.(4). Each iterative
non-conserved variables: density, velocities and pres- pass is composed of the following steps:
sure (p, v, p), and the discrete degrees of freedom - Solve for CFD with imposed vf, dvf/dt;
have been separated into those that touch thie solid - Solve for CSD with imposed s•! and
('fs') and the rest. M 1, fp, fp. f,. denote, respecti velyv, -S fo v,/dt.

the niass-matrix. right-hand side vectors for the dell- Note that unlike discretizations obtained from bound-
sity, pressure. and velocities. The combined fluid- ary integral methods, the error incurred by neglecting
I structure system now assumes the form the added mass Mf, + Mf is very small, as these

terms only contain contributions fromn the elemetms

Mf 0 (0 0 adjacent to them. For aii air/steel interface, the ratio

0M, 0 0 0 P of densities is O(103), for water/steel 0(10).d 50 Mf 0 0 . -v Depending on the time integration scheme used for

1 0 0 0 M. + M, 0 I(Jt the CSD and CFD domains, several simplifying

0 0 0v, strategies can be employed. Should explicit time in-
0 tegration be tile proper way to advance the CSD and

CFD regions (as is the case for the class of problemis3/ fsff /0 ) consIdered here), the loose and tight coupling systenis

fp t, 0 are almost identical, the only error being the mass of
flfo + fy + 0 ,(4) fluid for the first row of elements adjacent tmhe solid.

fwe, + fr f"f, + fq L "f, Should implicit time integration be the proper way toff advance the CSD and CFD regions (as is the ,ase

where we have set, v,,f = v1  as required for Navier- for low-frequency aeroelastic applications), time LIIS
Stokes applications. For Euler problenis, we only re- of the time-discrete form of Eqn.(4) will contl uin ell-
quire an equality of the normal velocities v" v1)". tries of the Jacobians of V. In this case, the iterative
Given this comiplete systemn, we call now define pos- strategy discussed above will have to be used for the
sible coupling algorithms, loose coupling approach if equivalency with the tight
a) Tight coupling: We denote by tight coupling the coupling systemi is to be achieved. Finally, if only a
simultaneous update of all variables. including (and steady-state solution for the coupled fluid-structure
most notably) those at the fluid/structure interface. systeii is sought, the loose coupling approach may be
This implies solving the complete system givei by used either with explicit or implicit time integration
Eqn.(4) in one step. The formulation allows for dif- for the CSD and CFD domains without incurring aIny
ferent grids in the CFD and CSD domains. but the errors.Sreader should realize that lie derivation of tile proper The variables onl tihe boundaries are transferred back

projection integrals can be tedious in 3-D. From a and forth between the different codes by a master
practical point of view, choosing this approach re- code that directs the multi-disciplinary run. Each
quires an almost complete re-write of the CFD and code (CFD, CSD, CEM, .. ) is seen as a subroutine,

aCSD codes into oiie siigle coupled code. This implies or object, that is called by tile master code. This

loss of modularity, awell the inability to co implies that the transfer of geometrical and physical
one CFD code with several CSD codes (or vice-versa). information is performed between the different codes
Moreover. the 'trade-oriented' aspect of each of the in- without affecting their layout, basic fictionality, atid

dividual codes is blurred or lost, with the associated coding styles. This is seen as the main advantage of

extra expenses for retraining the user base. thi s Th.

b) Loose coupling: We denote by loose coupling the this approach.5 separate update of the CFD and CSD domains, with A tremendous amount of man-years has been devoted

3
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to CFD and CSD codes. incorporating into thein all a) For the CFD code:
the minor features that make these codes efficient.
practical, user-friendly tools. The central assuiption Variables passed iii: 3
made here is that these codes will not be rewritten - Ending Time of CSD Step: tends

again, should be left alone in their present and future - Position/Velocity of Surface Points:

development, and nevertheless can be coinbined effi- coobs, vpobs

ciently to solve strongly coupled CFD/CSD problenis. Then: I
For structures that break, rupture, or deform - Inpose Surface Positions/Velocities from:

markedly due to the loads exerted by the fluid, the coobs, vpobs at time tendf

corresponding CFD and/or CSD grid will require - if(time.lt.tends) then: I
some form of remeshing. This renieshing can either - Advance CFD Solution One Tinmestep
be local or global in nature. If this remeshing can - Update CFD Mesh
not be done automatically, the usefulness of such an - Refine/Rlemesh CFD Domain As Required
approach will always remain limited. Therefore, auto- - Update time
matic gridding techniques are an enabling technology - endif
for this class of problems. The CFD code emnployed - Set tendf=time
here has, as one of its salient features, an automiatic - Compute Loads (Pressure, .. ) for the CSD 3
remeshing capabilityv. This capability is very inpor- Surface Points
taut for the class of fluid-structure interaction prob- - return
lemus considered, and will be demonstrated in the ex- Variables passed out: I
aiples shmowvn below. - Ending Timie of CFD Step: tendf

- Loads for the CSD Surface Points: loabs

3. APPROACH CHOSEN

As stated before, the loose coupling approach is b) For the CSD code:

followed here to bring together, iii a general, cost Variables passed In:
effective way, CFD and CSD codes currently in - Ending Time of CFD Step: tendf
widespread use, in order to solve strongly coupled - Loads at the Wetted Points: loabs
CFD/CSD problens. The global timiestepping algo- Then:
rithm, sketched iii Figure 3, proceeds as follows: - Inpose Surface Loads from CFD Code

- if(time.lt.tendf) then:

- Set: istar=1,istop=0 - Advance CSD Solution One Timnestep

- call CFD-code(.., istar, - Update CSD Mesh Accordingly I
- Read in CFD-Data - Refine/Remesh CSD Domain As Required

- Initialize all CFD Arrays - Update time

-call CSD-code(.., istar, "') - endif

- Read in CSD-I)ata - Compute Positions and Velocities for the Wetted
- Initialize all CSD Arrays (CFD) Surface Points

- if(istop.EQ.O) then return I
- call CFD-code(.., istop, tends, tendf, Variables passed out:
- call CSD-code(.., istop, tends, tendf, -) Ending Tine of CSD Step: tends

- endif - Position/Velocity of Surface Points: i
coobs, vpobs

Here tendf, tends denote the ending times for tihe c

CFD and CSD code respectively. The algorithm out- 4. CODES SELECTED I
lined above clearly leaves the possibility open to per-
form N-CFD-code steps, followed by M-CSD-code The selection of the respective CFD/CSD codes was
steps, i.e. asynchroneous timestepping. It is felt that nmade according to the following guidelines:
this is of considerable imiportance in order to keel) - The code iiust be well proven; U
the algorithm as general as possible. As one can see. - The code must be benchmarked:
both time CFD and the CSD codes are called as sub- - The code must be supported;
routines. The argument list passed contains all the - The code must have a user base/cominumnity;
variables required for the inter-grid transfer of infor-
mnation. Having outlined the coupled procedure, we The two candidate codes chosen were: FEFLO96 for
can now examine the individual domnains nmore closely, the fluid and DYNA3D for the solid. A brief I

4
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overview of the physics being modelled, tile nuiner- d) Meshing Options: FEFLO96 allows for automatic
ical techniques employed, as well as useful engineer- adaptive h-refinement [19] and automatic remesh-
ing, nmeshing and software options available in these ing [20.21] in order to enhance the solution accuracy,
two codes is given in the sequel. even for situations with moving bodies.

4.1 CFD CODE: FEFLO96 e) Software: FEFLO96 is written in FORTRAN-

a) Physics: FEFLO96 is a simulation code for corn- fully Renumbering techniques [22]
pressible flows. The equations solved are the Euler, are used extensively in order to avoid cache-misses
Laminar or Reynolds-averaged Navier-Stokes equa- on RISC-based machines. Parallelization is achieved
tions, as well as the linear acoustics equations. The via domain splitting [23]. The code runs on all mia-

turbulence models available are the Sniagorinsky and jor workstations, vector-supercomputers and parallel
Baldwin-Lomax models, as well as a user-input option platforms.
via subroutine. Work is in progress on the k-epsilon FEFLO96 is a well-proven and benclmmaiked code
and k-omega models. Equations of state supported used extensively by the authors and others in the CFI)
by FEFLO96 include ideal polytropic gas, real air community [24-28].
EOS table look-up, water EOS table look-up, and a
link to the general SESAME library of EOS. In order
to handle situations with moving bodies and/or mov- 4.2 CSD CODE: DYNA3D
I ig grids. the equations are solved in the Arbitrary a) Physics: DYNA3D is a simlation code especially
Lagrangeani-Euiferian franme 13].Flagrawithganulesari fream ed [] asuited for solids undergoing rapid and severe defor-
Flows with particles are treated via a second solid miation. The conservation equations for momentumphase. Thie particles interact with thme fluid, exchang- are written and solved for inl the Lagrangiaii frame of
ing mass, momentum and energy, and are integrated reference. Tne lae formint large srain f

in tiie-onsstet mnne wih te fuid reerece The large deformation, large strain forlllU-
inl a limne-consistent mannmer with time fluid. lation is employed throughout. The code incorporates
b) Numerics: Time spatial discretization is accomi- forty-one different material models, among them liii-
plislmed via finite element techniques oti unstructured ear elastic, linear elastic-plastic, strain-rate sensitive
tetrahedral grids. In order to achieve high execution steel with fracture, hardening material models, a ge-
speeds, edge-based data structures are used. Both ological cap model for soil materials, and a variety
central and upwind flux (van Leer [1,H], Roe [15]) for- of coucrete models that simulate fracturing behav1'
mulations are possible. For the temporal discretiza- ior [29]. DYNA3D also offers eleven equations of
tion, both Tavlor-Galerkin and Runge-Kutta time state models, including equations of sta.te for high ex-integrat~ion schielnes are available. AMonotonicity of plosives.
the solution may be achieved through a bleid of

second and fourth order dissipation [16], pressure- b) Numerics: The spatial discretization is accoum-
based. Flux-Corrected Transport (FCT) [17], or clas- plislied via finite element techniques on unstructured
sic TVD limitors. Thile particles are integrated us- grids. The elements available for structural mod-

ing a second-order Runge-Kutta scheme, and optimal elling are one truss and two beam elements, several
tracking techniques [181 have been implemented to ex- quadrilateral shell elements (e.g. Belitschko-Tsai [:10],
pedite the transfer of information between fields and lluglies-Liu [31], YASE [29], and QPII [32], and hexa-
particles. hIeral elements with one-point integration for the 3-D

solids. The shells allow for multiple integration points
c) Enmineering: In or ffer to handle situations with across the thickness, making it possible to accurately
moving bodies, FEFLO96 offers a variety of options: treat nonlinear plastic behavior of simple and coni-
prescribed motion, 6-DOF integration based on aero- posite shells. Several hourglass control options imaydynamic forces, aid limk to CSD codes. be used. We have found that the Flanagan-Belitscliko
A variety of boundary conditions can be prescribed hourglass control [33] works best for the unstructured
to simulate as faithfully as possible engineering flows: hexahedral grids we most often employ. The temporal
sub-,traii-, and supersonic in/outflow, total pressure discretizatioi is carried out using an explicit, central
inflow b.c., static pressure, mach-number and normal difference method, which is conditionally stable.
flux outflow b.c., porous walls, and periodicity. At the
same time, a large variety of diagnostics is produced c) Engineering: DYNA3D incorporates a large num-
by the code to track or display specific parts of the ber of convenient features that prove especially useful
flowfield that are of special interest: 0-D probes (e.g. for realistic engineering problems. The following is a
for station time history), 1-D line segnments for x/y non-exhaustive list of those features that were par-
display, 2-D planes or iso-surfaces for contouring, flux ticularly relevant to our class of applications. The
trough surfaces, force and moment data on surfaces user may prescribe non-reflecting boundary condi-3or bodies on-line display of the flowfield, etc. tions which eliminate stress wave reflections at model
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boundaries. making it possible to use smaller mod- to the actual product of shape-functions with nodal
els. There are twelve types of sliding-interface algo- values. e.g. in order to obtain the pressure at a point
rithuis to treat, different interface conditions between on a face.
interacting parts. Sliding-interface algorithinis permit Consider the problemn of fast interpolation between
the treatmeent of contact conditions with friction, gap two surface triangulations. Other types of surface
opening, spotwelds. etc. For civil engineering alplica- elements call be handled by splitting them into tri-
Lions, there are rebar-concrete interaction algorithms angles, so that what follows may be applied to such
which include degradation and failure of bond.whic inlud degadaionandfailre f bnd.gridtypes as well. In the sequel, we will denote the
A large variety of diagnostics is produced by the code gridlyces as w n e el, w e w i den e
to track or display specific parts of the structure that triangular surface elements as faces. 'hile basic idea

are of special interest: 0-D probes (e.g. for station is to treat the topology as 2-D, while the iterpola-

time history), 1-D line segments for x/y display, 2- tion problem is given in 3-D - ,ace. This implies that
further criteria, like relative distances normal to the

D planes or iso-surfaces for contouring, stress, strain, surface, will have to be employed in oder to make 3
force and moment data on surfaces or fields, etc. t fe wro l unqe t h b asicproed i s to coin

tile problem un1ique. The basic procedure is t~o coni-

d) Meshing Options: DYNA3D in its current state pute the shape-functions of the surface triangles for
does not allow for automatic adaptive h-refinement, or any point being interpolated. Using the notation of
automatic remeshing. Work is currently in progress Figure 4, we can write:
to incorporate these feature into DYNA3D .

e) Software: DYNA3D is written in FORTRAN- x1, =x0- g (5) 3
77 and fully vectorized. The code was written with i=1,3

CRAY-type machines in mind. but runs well oil all where
major workstations. vector-supercomputers and some
parallel platforms. It employs dynamic memory allo- gi x
cation, iiaking it capable of solving very large prob- gl,2 = XI,2 - XO g - I9 g21 (6a, )
lenis.11X92DYNAe D is a well-proven and benclunarked code U 1,2 = N'2 , a0 = - ao1 - 0 2 (6c, di)

used exteinsively by the authors and others in the CSD Point x. may be considered as being oil the surface
community [29,34,35]. DYNAaD was developed at face 1ff:
tile Lawrence Livermore National Laboratories by Dr. f

John Hlallquist with contributions from Dr. David
Benson and Dr. Robert Whirley. DYNA3D has m in(N', I - Ni) > 0 , Vi= 0,1,2 (7a)
been successfully used for a large number of applica- I
tions, including nuclear and conventional weapon de- and
sign, car and airplane crashworthiness studies, analy-
sis of reinforced structures such as bunkers, tuinels, d,, = ice _3 :5,b (7b)
and silos, as well as spent nuclear shipping cases. It Here 6,, denotes a tolerance for the relative distance
is supported and maintained by Lawrence Livermore normal to the surface face. Many search and ii-
National Laboratories. terpolation algorithms have been devised over the 3

5. SURFAC.E TO SURFACE INTERPOLATION years. We have found that for generality, a layered
approach of different interpolation techniques works

One of the main aims of tile proposed approach is best. Wherever possible, a vectorized advancing front
to couple the different codes iii such a way that each neighbour-to-neighbour algorithm is employed as the
one of time codes used is nmodified in the least possible basic procedure [36]. Should this fail, octrees [37,:38]
way. Moreover, the option of having different. grids are employed. Finally, if this approach fails too, a
for different disciplines (CFD/CSD/CEM'..), as well brute force search over all tile surface faces is per- I
as adaptive grids that vary in time, implies that in formed [36]. For realistic 3-D surface geometries, the
most cases no fixed common variables will exist at interpolation of surface grid information may be coni-
the boundaries. Therefore, fast and accurate interpo- plicated by a number of the factors. The first of these
lation techniques are required. As the grids may be factors is the proper choice of 6,, i.e. the proper aim-
refined/coarsened during timesteps, and the surface swer to the question: 'How close must a face be to a
deformations may be severe, the interpolation proce- point in order to be acceptable ?' This is not a trivial
dures have to combine speed with generality. Ill what question for situations where narrow gaps exist in the I
follows, we will use the word interpolation as refer- CFD mesh, and when there is a large discrepancy of
ing to the process of finding, from a list of faces, the face-sizes between surface grids. Our experience indi-
one closest to a given point, and the word evaluation cates that for attached surface tracking, the choice I

6
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Here /if, Ui, denote the face and point-normals respec-
tively. The definition of a proper point-normal from

6,n < c,, • g1 x g210 , C = 0.05 , (8) the face-normals can be problematic for noil-smooth
surface, such as those obtained when severe buckling

works reliably, although the constant c,, may be prob- or wrinkling occurs. For these cases, all faces are con-
leni dependent. A second complication often encoun- sidered for interpolation.
tered arises due to tHie fact that Eqn.(7a) may never

be satisfied (e.g. the convex ridge shown in Fig- Experience indicates that it is advisable to perform a
tire 5a), or may be satisfied by more than one surface local exhaustive search for all faces surrounding the
face (e.g. the concave ridge shown in Figure 5b). In best face found in order to obtain the face that sat is-

the first instance the criterion given by Eqn.(Ta) may fies Eqns.(7,10) as best possible.

be relaxed somewhat to
6. UNWRAPPING DOUBLY DEFINED FACES

Consider the common case of thin structural ele-
min(X\i. I - Ni) Ž c , Vi = 0, 1,2 , (9) ulents, e.g. roofs, walls, stiffeners, etc. surrounded

where ( is a siall nummber. For the second case. the by a fluid medium. The structural elements will be

Isurface face with the smallest normal distance /,, is discretized using shell elelments. These shell elements
surfce ace ithtimesomlles nomal istnce 1,,will be affected by loads fr'om both sides .. ost. (SD)

selected. We remark that, in both of these inistances

the inter[)olation error is unaffected by the final host codes require a list of faces oni which loads are exerted.

Ssurface face. a~s tihe interpolation weights are such that This implies that the shell elements loaded from both
9urfaie face. so thee ridge are usedh thar sides will appear twice in this list. In order to be able-- n itherpoaionts belowenotchoing tohierde aorectse face to incorporate thickness and interpolate between ( *SI)

and CFD surface grids in a unique way, these dou-
v lesrace toielements arewdraggedith tlie icorrleSD a bly defined faces are identified, and new points are

suracepoi t hdatgit very incorrct to introduced. The first step is to identify the doubly
surface. \We have found that it is very importan to defined faces. A linked list that stores the faces sur-fi take the face t~hat has the smallest distance to the

point being interpolated in order to mitigate these rounding each point is constructed. Each face is then
problems.Fo a ions clore to m gatchecked by performing an exhaustive comparison ofproblems, o itain close to corners, gaps. or thme Ipoimts of each of thme faces surrounding thme first

imulti-body configurations. an exhaustive search over m iode of each faces w i fyoundiy defined
all ace wil b trggeed. n odernotto hec in node of each face. This will identify doubly defined

all faces will be triggered. me orer onot tohe ceck in faces ili O(Nf) complexity ,where Nf is time number
depth the complete surface mnesh, only the faces that. of faces. Should this check reveal the existence of
satisfy the relaxed closeness criteria c > -1, c, < 0.5 doubly defined faces, new points are introduced using
are considered. The face with tile closest distanceto he oin i ke t. f a fa e s tisie Eq m( a) t.lllI um Ivrapp~ing l)rocedure. A faces-surroumidimig-faces
to the point is kept. If a face satisfies Equ.(7a), the list fsufa(nedfa,nface) is built, where nedfa de-
closest distance is indeed d, Should this not be the notes thle number of edges per face, and n ace tmie
case. the closest distance to time three edges ij of the nuomber of faces. As any given face may have mmml-face is taken: mn~ro ae.!saygvnfc a aeml

tiple neighbour faces across an edge, it is important

to select the most suitable neighbour (see Figure 6).
S= minij jx,, - (I - l)x - (10) This is done by comparing the scalar products of time

face-normals between neighbours, as well azs the visi-

(xP - X) .(xj - Xi) bility of neighbour points from time current face. The
= (xj - xi) •(xj - x:) (lO.b) rest of the procedure is best explained in the following

pseudo-code form:
Should two faces have the same normal distance. the
one with tile largest minimum shape-function o',
i = 0, 1, 2 is retained.

A third complication arises for cases where thin shells
are embedded ini a 3-D volumetric fluid mesh. For
these cases. tile 'bestl face may actually lie on the
opposite side of the face being interpolated. This amn-

biguity is avoided by dlefining a surface normal, and
then only considering the faces and points whose nor-
mals are aligned. i.e. those for which

I11f.1r>e, c,=0.5 (11)
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Initialize point array lpoin(1 :npoin)=O may have to be used to interpolate and move the stir-
face of the CFD mesh as the structure moves. We

do iface=1,nface ! Loop over the faces have incorporated the following techniques:
do inofa~l,nnofa !Loop over the face-nodes

ipoin=bface(inofa, iface) ! Point number a) Exact tracking with linear interpolation. This is

if(ipoin.gt.0) then the most straightforward case, but, as could be seen

if(lpoin(ipoin).eq.0) then from the example described above, may lead to bad 3
The point has not yet been surrounded r results.

ipold=ipoin b) Exact tracking with (uadratic interpolation. In
ipnew=ipoin this case, the surface normals are recovered at the I

else end-points of the surface triangulation. For each edge
As the point has already been surrounded and of the triangulation, the midpoint is extrapolated us-
the point was left unconsidered: ing a Hlermitian polynomial (see Figure 8). In this
introduce a. new point way, quadratic triangles are obtained. The surface
ipold=ipoin is then approximated/interpolated using this higher
npoin=npoin+l order surface.

ipnew=npoin c) Tracking with initial distance vector. In many in-
Transcribe coodinates and points of ipold stances, e.g. thick shells, the CFD and CSD domainis
to ipnew will never coincide. A way to circumvent this dilemniia

endif is to compute the difference vector between the initial
Surround the point with faces obtained fromi fsiifa CSD and CFD surfaces. and maintain this vector (al-
that have point ipold in common lowing for translation and rotation) for the duratioii
.Modify bface. setting entry of ipold to -ipnew of the coupled run. Several options are possible here. I
Mark the point as surrounded: lpoin(ipoin)=-l and we are still actively exploring which is thie best

endif way to proceed.
enddo An important area currently under investigatioi is i

enddo how to handle, in an efficient and automatic way.
Restore bface to positive values, models that exhibit incompatible dimnensionalities.

An example for such a 'reduced model' would be anl
T1he unwrapping of multiply defined faces is shown aeroelastic problem where the wing structure is mod-
in Figure 7. Ilaving unwrapped the surface iiesli, a eled by a torsional beam (perfectly acceptable for the
unique set of point-normals that point into the (-FD lowest eigenniodes), and the fluid by a 3-D volunietric
field is obtained. Taking into consideration the thick- mesh. It is easy to see that the proper specification I
iess of each shell, the point coordinates used for ii- of movement for the CFD surface based on the 1-l)
terpolatlion onto the CFD surface are computed. beam. as well as the load transfer froml the fluid to

the beam. represent non-trivial problems for a geln- I
7. SURFACE TRAC'KING TECHNIQUES eral, user-friendly computing enviroiment.

An important question that needs to be addressed is 8. CFD-CSD LOAD TRANSFER
how to make the different grids follow one another
when deforming surfaces are present. Consider the During each global cycle, the CFD loads have to be
typical aeroelastic case of a wing deforming under transferred to tile CSD mesh. Simple point-wise in-

aerodynamic loads. For accuracy purposes, the CFD terpolation caml be employed for those cases in which I
discretization will be fine on the surface, and the sur- the elements of the CSD surface mesh are smaller or
face will be modelled as accurately as possible from of similar size than the elements of the CFD surface
the CAD-CAM (data at the start of the simulation. mesh. However, this approach is not conservative.

On the other hand, a CSD discretization that models and will not yield accurate results for the commi
the wing as a series of plates may be entirely ap)ropri- case of CSD surface elements being larger than their
ate. If one would force the CFD surface to follow the CFD counterpart. Considering without loss of gener-

CSD surface, the result would be a wing with no thick- ality the pressure loads only, it is desirable to attain:
ness, clearly inappropriate for an acceptable CFD re-
stilt. On the other hand, for strong shock/object in- p1(X) ;ý PJ (x) (12)

teractions with large plastic deformnations and possi- while being conservative in the sense of: U
ble tearing, forcing the CFD surface to follow exactly
the CSD surface is the correct way to proceed. These f fp, ndF-f pnd" (13)
two examples indicate that more than one strategy I
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where pj,p, denote the pressures oil the fluid ai( In this case, the shape-functions Ni(xi) at tle
solid material surfaces, and n is the normal vector. Gauss-points are known, and the unknown pressure
These requirements may be combined by employing a pf (Xqp) = N}(xqp)pjf at the Gauss-points is inter-
weighted residual method. With the approximiations: polated. This procedure is non-conservative, as the

quadrature points of the solid faces may miss some of

" p=N pi,, Nf (14) the fluid surface pressures.

we have Option 2: Perform a loop over the CFD faces

J Ns drp J, Nfdrpj f (16) 1F• N=/ NNdrpj

which may be rewritten as: - A1  [VqpE(xgp)pf(xgp) i(22)

I I g
Mp, =r=Lpf (17)

Here M is a -consistent mass-miiatrix', and L a 'load- In this case, the pressures pf(xgp) = N3 (x0 p)pjf at
ing matrix'. The solution of this coupled system of the Gauss-points are known, and the unknown shape-

equations is obt-ained iteratively in the now familiar functions N,(xgp) have to be interpolated. This pro-
way: cedure is strictly conservative, as the loop is over the

CFD faces, making sure that all pressures present are
M, r (18) transmlitted to the CSD surface. On the other hand.S r-(8 this procedure can be inaccurate: if the fluid faces are

where MI is the 'lunmped mass matrix'. Typically, substantially larger than the solid faces, some solid
three iterations are sufficient to achieve ail accurate points may not receive any fluid pressure contribu-
result. One caii also show that Eqn.(16) is equivalent tions at all. Such a situation has been sketched iii
to the least-squares minimization of Figure 9. In order to avoid these inaccuracies, the

face-sizes of the solid faces are interpolated to the

I [ p- _)/]2 d(19) fluid surface points. If a large discrepancy in size is
encountered, the number of Gauss-points for the fluid
faces is adaptively increased. This corresponds to aii

We remark that the weighted residual method is adaptive refinement of the fluid faces to miatch the
conservative in the sense of Eqn.( 13). The suin size of the solid faces.
of all shape-functions at any given point is unity
(-' N'(x) = i), and therefore: Many of the CSD codes accept only a constant load

"over each of the surface faces. If this is the case.
the elaborate procedure just described may be simi-Jp),dFr= [ VdFpj, = / V NNdIp, plified by taking a constant weighting function Pi' for
each one of the solid faces. The weighted residual
statemment, for the second, conservative option. then

= Z JN~N'~p~.~ J N~dLp,~1 becomies:Ni =i dr. . N,Nfjdrpj.f

=JZ NN Nf. dFpj= Nfdvpji= pdF (20) lis gA PP3(xgp)p1 (x9 p) . (23)I if 9P

The most problematic part of the weighted residual Given that the polynomial order of the integrals
method is the evaluation of the integrals appearing has been reduced from quadratic to linear, only one
on thle right-hand side of Eqn.(16). When the (lTD Gauss-point is required for exact integration. Alter-
and CSD surface meshes are not nested, this is a natively, one can compute pressures as before assumi-
formidable task. We have chosen to use G(aussian ing a linear or bilinear pressure disctribut~ion. and
quadrature. Two options are possible: then average over the nodes of a surface face. This

Option t: Perform a loop over the CSD faces will tend to spread tile loads more evenly over the
structural surface faces, avoiding 'ringing'.

N NJ dFpij,

= A, > V qpN'(xgp)pf(Xgp) . (21)
Ss gp
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9. EXAMPLE RUNS This mesh had no reinforcement bars (re-bars) ii the

The main area of applications envisioned for tile model. Rather, the reinforced concrete was treated as

present fluid-structure algoritlmn is the iiteraction of a single material with properly averaged elasto-plastic

shocks with structures. Therefore, a series of struc- parameters. The second model consisted of approxi-

tures were hit by shocks of varying strengths in order inately 50 Kbricks that had regular brick-shape. For
to see the ensuing effect. the walls, approriate reinforced concrete and re-bar

models were specified. The different grids are shown
9.1 Shock-Cylinder Interaction: For this case. we as- ill Figures 12b,c. Figures 12d,e show the surface pres-
sumne that a cylindrical shell of constant thickness and sures for the CFD region, as well as the absolute value
elastic/ideal plastic material (mild steel) is clamped of the surface velocities for the CSD region at differ- I
to the soil. A strong shock impacts onl the shelf. lead- ent tinies during tile run. Note that in one histaiice, a

ing to buckling and subsequent collapse. The initial large velocity is exhibited by the structure for the wall
conditions for the fluid, as well as the geometrical and separating the lower roomis, even though the shock
material parameters for the solid are given in Fig- waves have not, vet reached this section of the do-
ure I0a. Trie CFD mnesh consisted of approximately main. This is because the wall acts as a stiff beami.
20 Kpts and 100 Ktets. The CSD mesh consisted of producing a rotational motion around the line wliere
approximately 2.3 Kpts and 2.3 Kqshells. Both tie the four inner walls cross. Thus, a positive velocity I
CFD and the CSD grids were not adapted in time. in the upper wall results in a negative velocity for
A study was conducted to assess the effect of shell the lower walls. Figure 12f shows the comparison to
thickness on the collapse of the cylinder. Figures 10b- experimental measurements for the pressures at, four I
e show the surface grids for the CFD and CSD do- locations on the walls of the first room. Note the
mains at. different times, as well as the surface pres- excellent agreement between the predictions amid the
sure (CFD) and surface velocity (CSD). Although the measured data. Figure 12g shows the comparison of
CSD surface appears to consist of triangular elements, the displacements predicted for the two different CSD I
these are quadrilateral faces that, have been split into models with experimental measurements at, a point on
triangles along the shortest diagonal. One can read- the upper interior wall. Observe that the experimen-e-
ily observe the onset of buckling, as well as the coiii- tal data exhibits a linear drift. This phenomenon is
pletely different buckling shape for the two different comnionly observed for accelerometers. Taking into
cases. Note also the change in stagnation pressures account this drift, one can see that the correlation
due to the change in surface geometry. During these between the experiment and the predictions is quite I
runs, the CFD region was remeshed two times glob- good. One can also see that the more detailed model.
ally, and several times locally, with no modification which included re-bar models, gave a better correla-
to the surface mesh. tion with the experiment.'

9.2 Shock-Shelter Interaction: For this case. a closed 9.4 Truck: This last case shows some lpreliuiinar. me-
semicyliidrical shelter was assumed. The shelter was suits for a realistic shock-object interaction case. .he T
considered to be reinforced at the outer edges, the objective in describing this case is not to show de-
rim, as well as the middle. As before, ami elastic, ide-allyplaticmatrialwasuse fo theshel. stong tailed comparisons with experiments. ik separate re-(
ally p~astic material was used for thle shell. A strong port is being prepared for this purpose. Rather. the
shock impacts omi the shelter, leading to severe defor- aim is to show what is possible once a general set, of U
mations. The CFD inesh, which was adapted every interpolation and projection techniques is conined
7 timesteps, varied between approximately 15 Kpts with interactive pre-processors and producson i Co .SD
and 5ic Kpts (80 Ktets and 800 Ktets). The CSD and CFD codes. The geomnetry considered is that
mesh, which was not adapted ii time, consisted of of a 5-ton Army truck subjected to a strong shock.
approximately 1.25 Kpts and 1.25 Kqshells. Fig- Some of the geonietric data was obtained in Auto-
ures 1 la-c show the surface grids and pressures of the Cad format. Simplifying assumptions were made for
shelter at three time instants during the run. Note the engine, traismission and transmission shafts: all 5
the grid adaptation for the CFD domain, as well as of these were simulated as rigid solids. The springs

the onset of severe deformation in the unreinforced an ties were simulated wt eight-nod e bric g-
regions due to shock impact. and tires were simulated with eight-noded brick ele-

inents of appropriate material behaviour. The comiI-

9.3 Four-Room Experiment: For this case, a test plete CAD model for the structure. which was o0- U
section consisting of four rooms was selected. In tained in a week, consisted of 5,928 points, 3,000 lines.
room I (see Figure 12a) an explosion takes place. The and 1,386 surfaces, and is shown in Figure 13a. Once
CFD mesh consisted of approximately 260 Kpts and the CAD model for the structure was obtained. the I
1.3 Mtets. Two CSD models were employed. The CAD model for the surface was obtained in a single
first consisted of approximately 50 Kbricks that, were step by invoking an 'invert and uinwrap' option in tthe
generated by splitting a coarser mesh of tetrahedra. pre-processor used. This option removes all the inte-
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rior CSD CAD data, leaving only the wetted surface Fluid-Structure Interaction; J. Acoust. Soc. Am.
data for further use, and unwraps doubly loaded sur- 87, 5, 1938-1947 (1990).
faces (e.g. shells). The CAD model for the fluid con-
sisted of 6,306 points. 3,718 lines. and 1,604 surfaces. [4] (.C. Everstine - Prediction of Low Frequency Vi-
The FEM models totalled I Kbeains, 50 Kqsliells, brational Frequencies of Submerged Structures:

50 Kbricks and 22 materials for the structure, and J. Vibrations and Acoustics 113, (1991).

200 Kpoints and I Mtets for the fluid. Tie surface [5] P.S..Jacksoli and G.W. Christie - Numerical
discretizations of these grids are shown in Figure 131). Analysis of Three-Dimnensional Elastic Menr-
Figures 13c-d show the results for two different times brane Wings; AIAA J. 25, 5, 676-682. (1987).
during the run. [6] J.T. Batina, R.M. Bennet, D.A. Seidel, Hl.J. Cun-

10. CONCLUSIONS AND OUTLOOK niugham and S.R. Bland - Recent Advances iii
Transonic Computational Aeroelasticity; Coup.

A fluid/structure interaction algorithin based on tie Struct. 30, No.1/2. 29-37, (1988).
loose coupling of production CFD and CSD codes has
been described. The algorithm allows a cost-effective [7] J. Alonso, L. Martinelli and A. Jameson - Multi-

re-use of existing software, with a mininium amount grid Unsteady Navier-Stokes Calculations with
of alterations required to account for the interaction Aeroelastic Applications; AIAA-95-0048 (1995).
of tihe different media. Several examnple runs using [8] G.P. Guruswamy - Unsteady Aerodynamic and

FEFLO96 as tile CFD code, and DYNA3D as thie Aerolastic Calculations for Wings Using Euler
CSD code. demonstrate tie effectiveness of the pro- Equations: AIAA J. 28. 3, 461-469 (1990).
posed methodology.
Future developIments will center oil: [9] R.D. Rausch, J.T. Batina and ... Yang

- Treatment of reduced models. or models with iI-- Three-Dimensional Time-Marching Aerolas-

compatible dimiensionalities: tic Analyses Using an Unstructured-Grid Euler

- Improved reliability for complex geometries um- Method; AIAA J. 31, 9, 1626-1633 (1993).

dergoing severe deformations, especially when [10] A.1l. Boschitsch ard T.R. Quackenbush - High
contact is present; Accuracy Computations of Fluid-Structure in-
Further improvements to handle rot only accu- teraction in Transonic Cascades; AIAA-93-0485

rate load conserving projection, but also work (1993).
conserviong projectione [11] F.F. Felker - Direct Solution of Two-Dinrensioral
CED codes: Navier-Stokes Equations for Static Aeroelasticitv

Inclusion of implicit CSD codes, such as NAS- Problems: AIAA J. 31, 1, 148-153 (1993).

TRAN. ANSYS. or NIKE-3D to treat steady- [12] G.P. Guruswamy and C. Byun - Fluid-Structural
state or low frequeincy problems; Interactions Using Navier-Stokes Flow Equations

- Extensions to other multidisciplinary problems, Coupled with Shell Finite Element Structures:
including thermal and/or elect roinragmietic loads. A!AA-93-3087 (1993).
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3--Medical problems, where the patient data has been
An advancing front surface gridding technique that operates on obtained from CAT scans;

discretely defined surfaces (i.e. triangulations) is presented. Differ- -_Numerical simulations that require remeshing, either
ent aspects that are required to make the procedure reliable for
complex geometries are discussed. Notable among these are (a) -Within the same field solver (e.g., forging simula-
the recovery of surface features and discrete surface patches from tions, where remeshing is required to regularize the grid,

the discrete data, (b) filtering based on point and side-normals to or simulations with adaptive remeshing); or
* remove undesirable data close to cusps and corners, (c) the proper

choice of host faces for ridges, and (d) fast interpolation procedures -For use with a different field solver (e.g., fluid-
suitable for complex geometries. Post-generation surface recovery structure interaction problems, where the surface of the
or repositioning techniques are discussed. Several examples rang- fluid domain is given by the structural surface grid [3], or
ing from academic to industrial demonstrate the utility of the pro- hypersonic reentry problems, where ray-tracing based on
posed procedure for ab initio surface meshing from discrete data, the CFD mesh is used for heat transfer calculations).
such as those encountered when the surface description is already
given as discrete, the improvement of existing surface triangula- Given this discrete data, one may either approximate itI tions, as well as remeshing applications during runs exhibiting sig- via analytical functions, or work directly with it. We prefer
nificant change of domain. © 1996 Academic Press, Inc. the second choice, as the proper approximation via analyti-

cal functions becomes cumbersome and problematic for

1. INTRODUCTION complex geometries. A further reason for using directly
discrete data is the fact that surface intersection and trim-

The first and by far the most tedious step of any mesh ming are much easier on discrete data than on analytic
S generation procedure is the definition of the boundaries surfaces. This allows the concurrent generation of surfaces

of the domain to be gridded. This may be accomplished by different users, that are then merged quickly to obtain
in two ways: (a) analytically, i.e. via functions, or (b) using the final configuration [4].
a tesselation or triangulation. From a practical point of The present paper describes a surface meshing proce-

I view, it would seem that an analytic definition of the surface dure for discrete data that employs the advancing front
is the method of choice, given that nowadays most engi- technique [5-12]. The technique is based on three steps:
neering data originates from some CAD-CAM package. surface feature recovery, actual gridding, and surface re-

I However, in many instances, the boundaries of the domains covery. The outline of the paper is as follows: having given
to be gridded are not defined in terms of analytical func- the rationale for surface meshing ab initio from discrete
tions, such as splines, B-splines, Coon's patches, or NURBS data, Section 2 treats the problem of surface feature recov-
surfaces, but in terms of a triangulation, i.e., discrete faces ery. This step allows the surface gridding to obey sides,
and points. Several classes of applications where this is the cusps, or other "ridge" features that may be present in
case include: the discrete data, and results in discrete surface patches.

-Visualization and manipulation of complex analytical Section 3 describes the surface gridding of these discrete

3 functions, such as implicit analytic surfaces obtained via surface patches via the advancing front technique. Section

superposition or convolution [1, 2]; 4 considers ways of making the procedure robust in the

-Numerical simulations with geometric input data from presence of sharp corners or convoluted patches. Section
m eauments, sulas 5 considers the surface to surface interpolation problem,
measurements, such as which is of fundamental importance for large surface grids,

-Climate modeling, where the surface of the earth and Section 6 the postgeneration surface recovery. In Sec-
is available from remote sensing data; tion 7 several examples that demonstrate the versatility

-Groundwater and seepage modelling, where the and utility of the procedure are given. Finally, some conclu-
geological layers have been obtained from drill data or sions are drawn and an outlook for future work is presented
seismic analysis; and in Section 8.

I 0021-9991/96 $18.00
Copyright © 1996 by Academic Press, Inc.

All rights of reproduction in any form reserved.



2 RAINALD LOHNER I
3. ADVANCING FRONT TECHNIQUE5

L The advancing front technique has gained widespread ac-

ceptance for grid generation due to its versatility and speed
[5-12]. The basic technique consists in marching into the
as yet ungridded region by adding one face at a time.
The border separating the gridded region from the as yet
ungridded one is called the front. The algorithm may be

L.7 summarized as follows:

Fl. Define the surfaces to be gridded. In the present
Ss2 case, this is done via triangulations. At the same time,

L2 define the boundaries of the surfaces.

F2. Define the spatial variation of element size, stretch-

L, ings, and stretching directions for the elements to be 3
created. U

FIG. 1. Discrete surface patch recovery. F3. Using the information given for the distribution
of element size and shape in space, as well as the line-
definitions: generate sides along the lines that connect sur- I
face patches. These sides form an initial front for the trian-

2. SURFACE FEATURE RECOVERY gulation of the surface patches.

A basic requirement for any surface gridder is that tt F4. Select the next side to be deleted from the front;: I
obey sides, cusps, or other "ridge" features that may be in order to avoid large faces crossing over regions of small

present in the actual surface. In order to avoid gridding faces, the side forming the smallest new face is selected as
over these "ridge" features, sides are first generated along the front.

them, and then the surface is gridded with this initial front F5. Determine the discrete surface face IFADS that
of sides. A simple way to determine ridges is by comparing contains or is close to the midpoint of the side to be deleted.

the unit surface normals of adjacent faces. If the scalar F6. Obtain the unit surface normal nfds for IFADS. I
product of them lies below a certain tolerance, a ridge is F7. With the information of the desired element size
defined. Corners are defined as points that are attached to: and shape, and nfds: Select a "best point" position for the

-Only one ridge; introduction of a new point IPNEW (see Fig. 2). I
F8. Determine whether a point exists in the already

-More than two ridges; or generated grid that should be used in lieu of the new point.

-Two ridges with considerable deviation of unit side- If there is such a point, set this point to IPNEW and
vector. continue searching.

Between corners, the ridges form discrete lines. These
discrete lines either separate or are embedded completely Discrete
(i.e., used twice) in discrete surface patches. The formation Surface
of discrete surface patches is performed with an advancing nfdr
front algorithm. An arbitrary surface face is selected as aI
starting face and assigned a patch number. All neighbours

that are not separated by a ridge are kept in a local list. The I Poi
faces of this local list are interrogated for free neighbours in
turn and are assigned the current patch number. This local
list of neighbour faces becomes empty once all the contigu-
ous faces not separated by a ridge have been marked. This
procedure is repeated for all unmarked faces, yielding a Active Front I
list of patches. Using the information of which sides belong
to a face, the discrete lines can be assigned to the patches - New Surface Mesh
in turn. Figure 1 sketches the recovery of surface features I
and the definition of discrete surface patches for a simple
configuration. FIG. 2. Generation of surface triangulation on discrete surface.

I
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Actiew Frace

IActive Fron ap Due to Curvature

g FIG. 3. Discrete surface patch with cusps and corners. FIG. 4. Non-uniqueness of front crossing for curved surfaces.

I F9. Determine whether the face formed with the se- is not uniquely defined (see Fig. 4). This ambiguity is best

lected point IPNEW does not cross any given sides. If it circumvented by transforming all the points required, i.e.,

does. select a new point as IPNEW and try again, those in the list of close points and those attached to close
- sides, to the plane defined by the midpoint of the side to

F10. Add the new face, point, and sides to their respec- be deleted and the normal vector nfds. Thereafter, the face/
tive lists. side-crossing check is performed in 2D.

Fli. If a new point was added: reposition it on the 4.2. Point and side normals. It is advisable to use the
discretely defined surface. point and side normals obtained by interrogating the host

F12. Find the desired element size and stretching for face of the discrete data in order to filter out undesired
the new sides. data from the list of close points and sides. In this way,

3 Dthe front data of the lower portion of the cusp shown in
S F13. Delete the known sides from the list of sides. Figure 3 is automatically removed when generating a face

F14. If there are any sides left in the front, go to F4. on the upper portion and vice versa.
s c4.3. Angle of visibility. In order to avoid the improper

As compared to the surface gridding of analytically de- choice of close wrong points that may have the correctaned surfaces, which has been treated by a number of point and side normals, but belong to another portion of
S authors [7-9, 11, 12], the only differences are: the discrete surface patch (see Fig. 5), all points outside

-- The search for the discrete surface face containing or the allowable "angle of visibility" a are no longer consid-

close to a point (Steps F5, Fli); ered. A meaningful value for a can be obtained by measur-
- ing the local surface curvature of the underlying discrete

i-The introduction of a normal vector nfds for each face surface in the vicinity of the side to be removed from the
in order to determine the ideal point position (Step F7); front. In the present case, this is done by simply comparing

-The repositioning of new points on the discretely de- the normals of the host face and its neighbours.
fined surface (Eli). 4.4. Proper hosf face for ridges. For the sides along

ridges, there can be instances where the host face is not

34. ENHANCEMENTS FOR ROBUSTNESS properly defined. As an example, consider the situation

The procedure, as described above, will work well for
smooth surfaces. In practice, however, one is often faced
with discrete surfaces that exhibit cusps, sharp corners, or
ridges with high curvature (see Fig. 3). In these instances,
the procedure must be enhanced in order to work reliably.

I The most important of these enhancements: 2D crossing
check, point and side normals, angle of visibility for filter-
ing inappropriate data and proper host face for ridges, are

I described in the sequel.

4.1. 2D crossing check. In regions of colliding fronts
on 3D surfaces with curvature, the face/side-crossing check FIG. 5. Filtering with angle of visibility.I

I
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FIG. 6. Selection of proper host faces at ridges. dn = I s3 g 3 1

shown in Fig. 6. Given the orientation of the side 1-2, the FIG. 8. Surface interpolation.I

proper host face is 3-4-5. However, face 3-6-4 could also
be considered as a host face. In order to resolve this ambi- Fig. 7). With the notation of Fig. 8, the point to be interpo- 3
guity, the point xfds that is furthest from the side is deter- lated xP is given by U
mined for each possible host face. The proper host face
has to satisfy 3x, = x0 + ag,(2)

C, [(x2 - x1) X (Xfd, - X1)] • > 0. (1) 1

where
5. SURFACE TO SURFACE INTERPOLATION 5

One of the main differences between gridding discrete, gi = xi - x0 , i=1,2: g3 = (3a), (3b)
as opposed to analytic, surfaces is the potentially very Ig x g21'
expensive search for the host face of each new point and a
side generated. Careless implementation of these opera- and the shape-functions or barycentric coordinates N' are
tions would lead to an O(N,. Ne,1) complexity, where Np given by
denotes the number of new surface points created and Ndp a2I
the number of points defining the discrete surface patch. N' = o', i = 1, 2; N' = a'= 1 -aI - a2  (3c), (3d)
If both of these are of similar magnitude, the result is a
complexity of O(N~p), clearly inappropriate for large sur- the point x, is considered as being on the surface face 1ff:
face grids. Given that the advancing front algorithm by its
very nature adds points and sides in the vicinity of known min(N', 1 - N') - 0, Vi = 0, 1, 2, (4a)
data points, the host face of the side to be taken out can
be used as a good starting guess from which to find the and

correct host face via a neighbour-to-neighbour search (see
d-, I a-'g- 5"S. (4b)

n Here 8, denotes a tolerance for the relative distance normal 3
Start Fto the surface face. Many search and interpolation algo-

rithms have been devised over the years. We have found
that for generality, a layered approach of different interpo-
lation techniques works best. Wherever possible, a vec-
torized advancing front neighbour-to-neighbour algorithm
is employed as the basic procedure [13]. Given that the 3

-New Point advancing front algorithm by its very nature adds points

End Face = Host Face and sides in the vicinity of known data points, the host
face of the side to be taken out can be used as a good
starting guess from which to find the correct host face via
this neighbour-to-neighbour search (see Fig. 7). Should

FIG. 7. Neighbour-to-neighbour jump search procedure. this fail, octrees [14, 15] are employed. Finally, if this ap-

I



I REGRIDDING SURFACE TRIANGULATIONS 5

the smallest distance to the point being interpolated in
order to mitigate any possible problems. For situations
close to corners, gaps, or multi-surface configurations, an
exhaustive search over all faces will be triggered. In order
not to check in depth the complete surface mesh, only the

faces that satisfy the relaxed closeness criteria E - -1, c,,
< 0.5 are considered. The face with the closest distance

a) Concave Ridges No Host Face to the point is kept. If a face satisfies Eq. (4a), the closest
distance is indeed d,,. Should this not be the case, the
closest distance to the three sides ij of the face is taken:

8 = minij[X, - (1 - 0ij)xi - /3/xIl,

(Xp - xi) • (xi - x/) (7a), (7b)
! • (iJ - X-•)'-X•]- Xi)"

(b) Convex Ridges Multiple Host Faces Should two faces have the same normal distance, the one
with the largest minimum shape-function a', i = 0, 1, 2

FIG. 9. Problems when searching for host faces. is retained.
A third complication arises for cases where cusps or

close surfaces are present. For these cases, the "best" face

proach fails too, a brute force search over all the surface may actually lie on the opposite side of the face being

faces is performed [13]. For realistic 3D surface geometries, interpolated. This ambiguity is avoided by defining a sur-

the interpolation of surface grid information may be com- face normal, and then only considering the faces and points

plicated by a number of the factors. The first of these whose normals are aligned, i.e., those for which

factors is the proper choice of 8,,, i.e., the proper answer
to the question: "How close must a face be to a point in nfds" np > c,, c, = 0.5. (8)
order to be acceptable ?" This is not a trivial question for
situations where narrow gaps exist in the discrete surface Here nfds, np denote the discrete surface face and the point/
mesh, when there is a large discrepancy of face-sizes be- side-normals respectively. Experience indicates that it is
tween the discrete surface grids and the new surface grid, advisable to perform a local exhaustive search for all faces
as well as when the discrete surface grid exhibits highly surrounding the best host face found in order to obtain
stretched elements. Our experience indicates that the the host face that satisfies Eqs. (4), (7) as best possible.
choice Although these extra steps for interpolation seem com-

plex, they are not only indispensable for discrete data that
8, < c,. 1g1 x g21°., c,, = 0.05, (5) exhibits cusps, high surface curvature, and internal ridges.

but their cost is not significant.
works reliably, although the constant c,, may be problem
dependent. A second complication often encountered 6. POSTGENERATION SURFACE RECOVERY
arises due to the fact that Eq. (4a) may never be satisfied
(e.g., the convex ridge shown in Fig. 9a), or it may be After the surface grid has been generated, it may be
satisfied by more than one surface face (e.g., the concave desirable to reposition the points in order to meet certain
ridge shown in Fig. 9b). In the first instance the criterion surface fidelity criteria. Obvious choices, shown in Fig.
given by Eq. (4a) may be relaxed somewhat to 10, are:

min(N', 1 - N') Vi = 0, 1, 2, (6) (a) Keep as is. I.e., no postprocessing. This will be the
preferred choice if the loss of surface fidelity due to curva-

where 8 is a small number. For the second case, the discrete ture and/or different face-sizes is small.

surface face with the smallest normal distance d, is se- (b) Move to closest discrete point. The rationale for

lected. We remark that in both of these instances the final this option is that if the underlying discrete data is of much

point location is unaffected by the final host surface face, finer resolution than the newly generated mesh, moving

as the interpolation weights are such that only the points each point to a given point will not distort the mesh signifi-

belonging to the ridge are used for interpolation. We have cantly while assuring an exact pointwise representation.

found that it is very important to take the face that has (c) Higher order recovery. In this case, the new sur-

I



6 RAINALD LOHNER I
a) Generated Mesh b) Keep As Is with respect to the plane formed by the plane. For a com-

plete cubic, 10 pieces of information are required. We use
the Zienkiewicz triangle, derived for plate elements [16],
to account for this deficit.

The recovery procedures described represent just two
instances of many possible alternatives, such as mid-nor-
mals, local spline, Clugh-Tocher, Doo-Sabin, etc. [17, 18].

c) Move to Closest Point d) Higher Order Recovery IS7. EXMPE
The described procedure was applied to a number of

cases in order to test its applicability in production environ-
ments. For all of these cases, the surface was recovered

V0using quadratic and cubic functions. However, no graphi- i

Dicrt cally discernable difference was encountered. 3
-- Discrete Data Triangulation

New Surface Mesh 6.1. Sphere. We start with this academic example to
FIG. 10. Postgeneration surface recovery, show the basic possibilities of surface gridding based on 3

discrete data representations. An initial surface mesh,
shown in Fig. 12a, is taken as the starting point. This mesh
contains no faces whose normals vary by more that/3 =face points are repositioned using higher order recovery 10' among neighbours. For this reason, the whole surface

procedures for the discrete data. This option is attractive is treated as one patch, with the largest side taken as a

if the discrete surface data is much coarser than the newly discrete line. Two new surface grids, one of constant ele-
generated mesh and exhibits surface curvature. The first ment size and one with a prescribed source at one end of
step consists in computing average normals at the points the sphere, were generated and are shown in Fig. 12b, c. U
of the discrete surface. In a second step, the information 6.2. Forging piece. This second problem demon-
of which host face a point belongs to, and which are its strates the use of surface remeshing for discretely defined i
local area coordinates ý1, ý2, ý3, together with the point domains within the same numerical simulation. A piece U
normals, is used to reposition the point. We have consid- that originally started out as pie-shaped has been distorted
ered to date: significantly due to forging. A complete remeshing of the i

(cl) Quadratic recovery. For each side of the dis- computational domain is required. The surface of the mesh 3
crete surface triangulation, a mid-point location is esti- at this stage is shown in Fig. 13a. The edge-detection algo-
mated from a Hermitian polynomial as

x = (1 - 6)'(1 + 2e)Xl + 6- - ý)2ri (9D

r+ (3 - 2ý)x2 - e (1 - 6)r2, I
where

n2
n X (s Xn)r= s n (sn), S X2 - X i, S=I, (10) n

and • = 0.5. With this information, and using the notation SW
in Fig. 11, the recovered point location is given by the Surface FaceWith Normals I
standard quadratic triangle shape functions [16]:

x = 41(2ý1 - 1)xl + ý2(2'2 - 1)x, + ý3(2ý3 - 1)x 3 (11) 32
+ 4ý1 •'2 X4 + 4� 2 X3 X5 + 466iX6 " n

(c2) Cubic recovery. For each face of the discrete Surface Edge i
surface triangulation, we have nine pieces of information:
location of the end-points, and inclination of the normals FIG. 11. Quadratic surface reconstruction. I

I
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g a) Original Surface b) Remeshed Surface With Uniform Size

I
U
I

c) Remeshed Surface With Non-Uniform Size Close-U

I
I
I

FIG. 12. Sphere.

I rithm then forms the discrete line and surface patch approximately 5,000 points, shown in Fig. 15a, is then
definition shown in Fig. 13b. The angle used to determine triangulated using an automatic surface recovery tool
ridges was set to /3 = 250. An adaptive background grid developed by the author [19] (for automatic surface
is generated automatically [10], starting from a cube. recovery, see also [18, 20]). The surface is now defined
With this background mesh, a new surface triangulation, discretely, and lines and patches, shown in Fig. 15c., are
shown in Fig. 13c, is generated. recovered. The final surface mesh, suitable for stamping

6.3. Ship. This case illustrates the use of surface calculations, is shown in Fig. 15d. This example clearly

meshing from discrete data as a means to expedite the demonstates the possible advantages of discrete surface

domain definition process, as well as the possibility of gridding. Trimming and combining over 500 surfaces is a

correcting an initially improper surface discretization. An tedious and time-consuming effort, which can be reduced

initial surface mesh for the ship, shown in Fig. 14a, was drastically as shown here.

provided as a starting point. The discrete lines and 6.5. Generic hypersonic airplane geometry. This final
surface patches obtained using an angle tolerance of /3 case shows the combination of discrete and analytically

30' between adjacent faces are shown in Fig. 14b. A defined surfaces to obtain rapid turnaround in preliminary
finer meshing region close to the water line was specified design calculations. The airplane fuselage is given from
by using two surface sources [10]. The final surface mesh, a structural dynamics calculation and shown in Fig. 16a.U given in Fig. 14c, not only exhibits a better discretization The recovered discrete surface patches, together with
(i.e., less small angles), but it is also better suited for the added outer box and some further analytical patches
the numerical simulation. for nozzle entry and exit planes, is shown in Fig. 16b.

6.4. Car fender die. This case shows the use of The new surface discretization, suitable for preliminary
surface meshing from discrete data as a means of stream- aerodynamic design calculations, is shown in Fig. 16c.
lining data input within industrial simulations. The origi-
nal CAD dataset had over 500 surface patches, many All of the surface grids shown were obtained in less
of them overlapping and in need of trimming. Instead, than 5 min on an IBM RISC-550 workstation, indicating
a cloud of points, obtained from a digitization of the that it is feasible to port these automatic surface meshing
actual part, is taken as the starting point. This cloud of and remeshing techniques into production codes.I
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8. CONCLUSIONS AND OUTLOOK 5

An advancing front surface gridding technique that op-
erates on discretely defined surfaces has been presented.
Different aspects that are required to make the procedure
reliable for complex geometries are discussed. These in-
clude:

-Recovery of surface features and discrete surface 5
Original Surface Mesh patches;

-Filtering based on point and side-normals to remove
undesirable data close to cusps and corners;

--Filtering based on an angle of visibility to remove
irrelevant close-point/side data;

-The proper choice of host faces for ridges; and

-Fast interpolation procedures suitable for complex ge-
4/ ometries.

Discrete Lines and Surface Patches The task of postgeneration surface recovery or reposi -

tioning is also discussed, and some of the many possible
alternatives are given.

Several examples ranging from academic to industrial
demonstrate the utility of the developed procedure for ab
initio surface meshing from discrete data. such as those
encountered when the surface description is already given
as discrete, the improvement of existing surface triangula-

tions, as well as remeshing applications during runs exhib- I
iting significant change of domain.

Surface Mesh With Background Grid Adaptation As with any other technique, improvements are always
possible. They will center on better postgeneration surface

FIG. 13. Forging piece. recovery schemes and further enhancements in robustness n
and reliability for complex geometries. I

~i

a) Original Surface Grid I

b) Discrete Lines and Surface Patches

~I

c) New Surface Grid

FIG. 14. Ship hull. I
I
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5 a) Cloud of Points b) Recovered Triangulation

I

I c) Discrete Lines and Surface Patches d) Remeshed Surface

FIG. 15. Car fender die.I
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i Progress in Grid Generation via the Advancing Front Technique
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3 Abstract. We describe recent extensions and improvements If we consider the fourth item on this list, i.e. the task
to the advancing front grid generation technique. These of filling a given domain with elements, there appear
improvements target a range of applicability, speed and user to be only two basic ways of accomplishing it:
firiendliness. The range of applicability is enlarged by the
ability to produce volumetric grids around thin surfaces (such -by filling the 'empty', i.e. as yet ungridded region
as shells, membranes, fabrics or swftaces with cusps), the with elements; or
generation of high aspect ratio grids for Navier-Stokes -by modifying an existing grid that already covers
applications, the generation of higher order triangular and the domain to be gridded.
tetrahedral elements, and the generation of quadrilateral and The first class of techniques denotes the advancing
hexahedral elements. Speed improvements are the result of fro t mehos [1 te frntqbe i de fines the
reduced search overheads, as well as vectorization and front methods [4-10] the front being defined as the
parallelization. User friendliness is enhanced by the ability to boundary between the gridded and ungridded region.
grid directly discrete data and simpler ways of specifying the The key algorithmic step that must be addressed for

desired element size and shape in space. Numerous examples advancing front methods is the proper introduction
are included that demonstrate the versatility and maturity that of new elements to the ungridded region. For triangular
advancingfiront grid generators have achieved, and tetrahedral grids the elements are introduced

sequentially one at a time. For quadrilateral and
Keywords. Finite elements; Grid generation; Tetra- hexahedral elements, this technique is known as

hedra; Unstructured grids paving or plastering [11, 12]. The second class of
techniques is known as Voronoi or Delaunay triangu-
lation methods. Here, the key algorithmic step is the
proper introduction of new points to the given grid.

1. Introduction This class of techniques has been used only for the
construction of triangular or tetrahedral grids. The

SThe general topic of unstructured grid generation name Voronoi or Delaunay that is associated with

techniques has seen a major burst of activity in recent these techniques stems from the element reconnection
years. While only a decade ago the automatic technique most often employed [13-19]. We remark

generation of grids for complex geometries in excess that the modified or finite octree [20, 21] techniques

of a million elements was impossible, we nowadays represent just one possible realization of a Delaunay
commonly deal with problems of this size [1-3]. triangulation. Given the known distribution of points
When contemplating the generation of a grid, four from the octree, the mesh connectivity is obtained by
data items must be specified: applying the circumcircle or Delaunay criterion.

The present paper summarizes some recent exten-

(a) A description of the bounding surfaces of the sions and improvements of the advancing front

domain to be discretized. technique. In order to define terms and aid in the

(b) A description of how the element size, shape and understanding of some of the subsequent material, an

orientation should be in space. outline of the basic technique is described in Section 2.
(c) The choice of element type. Section 3 treats the following extensions in the range

(d) The choice of a suitable method to achieve the of applicability: multimaterial problems, volumetric
generation of the desired mesh. gridding of thin or crossing surfaces, grids suitable for

_ _ _Navier-Stokes applications, higher order triangles
Correspondence and offprint requests to: R. Lbhner. GMU, CSI, The and tetrahedra, and grids consisting only of quadri-
George Mason University, Fairfax VA 22030-4444, USA. lateral or hexahedral elements. Speed improvements
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Automatic. Parallel and Fault Tolerant Mesh Generation 185 3
combustion simulations, and can take advantage of volume mesh generation for CAE. It uses highly
more accurate discretization schemes. parallel algorithms to produce unstructured all-

"* Reduction of element count. Today, HEXAR hexahedral meshes featuring local grid refinement and
produces meshes that are 2-10 times larger than coarsing. It is designed to minimize the length of CAE
hand-made meshes. by reducing the time required to generate meshes.

" Improving implementation in analysis. Our ob- Today, HEXAR produces sometimes a large number i
jective is to tune the product so that it can be fully of elements, may produce meshes of marginal quality
integrated into existing CAE environments. Each for certain applications and is relatively demanding in
specific application area such as structures, cooling, terms of computer resources. As it is further developed,
casting or external aerodynamics has its own its fidelity to the input geometry will improve, its
requirements. HEXAR must be improved in such element count will be reduced and its performance will
a way that all these requirements can be satisfied increase substantially.
with concern for accuracy and with minimal need
for human interaction during mesh generation.

"* Reduction of the computational time. Today, References
HEXAR requires a relatively large amount of
resources. This is because HEXAR relies heavily on 1. Stephenson, M.B., Blacker, T.D. (1989) Using conjoint meshing
ray tracing and pattern recognition techniques primitives to generate quadrilateral and hexahedral elements in

which can be parallel, but computationally irregular regions, Computers in Engineering (Riley, D.R.,

demanding. Future work will involve the explora- Cokonis, T.J., Gabriele, G., Kinzel, G.L., Tamma. K.K., Bennett. I
tion of faster methods in order to achieve a D.W., Kinoglu, M.F., Busnaina, A.A. and Rasdorf, W. Editors),

American Society of Mechnical Engineers, Book No. G0502Bhundred-fold reduction in mesh generation time. 2. Taghavi, R.; Dupont, A. (1989) Multidimensional flow simulation

in an inlet port/combustion chamber assembly featuring a
moving valve, Proceedings of the ASME Energy-Sources

6. Conclusion Technology Conference and Exhibit, Houston, TX
3. Cabello, J.; Lohner, R.; Jacquotte, O.P. (1991) A variational 3

HEXAR is a good quality, approximate, automatic method for the optimization of two- and three-dimensionas
unbstructured meshes, Abstract in the first US National Congress

mesh generator that represents a novel approach to on Computational Mechanics, Chicago, IL
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due to reduced search overheads, global h-refinement, F7.2 Determine whether a point exists in the
vectorization and parallelization are the topic of already generated grid that should be used
Section 4. Section 5 deals with improvements in in lieu of the new point. If there is such a
user-friendliness, in particular surface generation point, set this point to IPNEW and
from discrete data and more convenient ways of continue searching (go to F7.2).
specifying element size and shape for complex geom- F7.3 Determine whether the element formed
etries. Section 6 is devoted to examples. As most of with the selected point IPNEW crosses
these examples combine several of the improvements any given faces. If it does, select a new
described, the decision was made to add the examples point as IPNEW and try again (go to
section at the end, instead of showing them 'on the F7.3).
go'. Although this makes the main body of the paper F8. Add the new element, point and faces to their
rather "dry', it should facilitate the overall understand- respective lists.
ing of the material. F9. Find the generation parameters for the new faces

from the background grid and the sources.
S2. The Advancing Front Technique F10. Delete the known faces from the list of faces.

FIll. Add the new faces to the front.

The advancing front technique [4-10, 22] consists in F12. If there are any faces left in the front, go to F6.

marching into as yet ungridded space by adding one A recent thesis by Frykestig [23] gives a good
element at a time. The region separating the gridded comparison of the different possibilities explored to
portion of space from the as yet ungridded one is date for selecting the 'best point position', when to
called the f!ront. The algorithm may be summarized use a given point vs the introduction of a new point,
as follows: specialized data structures for storing and retrieving

Fl. Define the boundaries of the domain to be mesh data, etc. The complexity of the advancing front
gridded. Without going into further detail, we algorithm is of O(N log(N)), where N denotes the
will assume some general form of hierarchical number of elements. Over the years, optimal data
surface definition consisting of patches, the lines structures have been implemented to realize such a
that surround or delimit them, and points at the favourable scaling [7-10, 24, 25]. The procedure has
intersections of lines, been used extensively to grid large-scale complex

F2. Define the spatial variation of element size, geometry domains [1-3, 26, 27] and within adaptive
stretchings and stretching directions for the remeshing procedures [6, 9, 28-32]. Sustained speeds
elements to be created. in excess of 50000 tetrahedra/min have been achieved

F3. Using the information given for the distribution on the CRAY-YMP [10, 29].
of element size and shape in space and the
line-definitions: generate sides along the lines
that connect surface patches. These sides form 3. Extending the Range of Applicability
an initial front for the triangulation of the
surface patches. Having outlined the basic advancing front technique,

F4. Using the information given for the distribution the next logical step is to extend the method's range
of element size and shape in space, the sides of applicability. This section treats multimaterial or
already generated, and the surface definition: multidomain applications, volume meshing for thin or
triangulate the surfaces. This yields the initial crossing surfaces, the generation of grids suitable for
front of faces. Reynolds-averaged Navier-Stokes simulations, higher

F5. Find the generation parameters (element size, order elements, and the generation of grids consisting
element stretchings and stretching directions) solely of quadrilateral or hexahedral elements.
for these faces.

F6. Select the next face to be deleted from the front; 3.1. Multimaterial or Multidomain Problems
in order to avoid large elements crossing over
regions of small elements, the face forming the Most large-scale fluid dynamics problems assume a
smallest new element is selected as the next face connected region where the material properties
to be deleted from the list of faces. (pressures, temperatures, viscosities, etc.) vary accord-

F7. For the face to be deleted: ing to a single equation of state. The situation is very

F7.1 Select a 'best point' position for the different in structural mechanics, where multimaterial
introduction of a new point IPNEW. applications are common. The extension of the

I
I
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Surface 1
Surface 2 1A ,

\ " I

Fig. 1. Crossing of faces for thin surfaces.

Environment 1 3
Ridge

I
SRidge

Environment 2 Fig. 2. Environment variable definition.

advancing front technique to these situations is lead to a crossed front. Suppose that face A in Fig. 1
straightforward. In a first pass, all the surfaces defining is to be eliminated from the front. Point P will be the l
the inner and outer boundaries of the domains to be point chosen when eliminating this face to form a new
gridded are triangulated. Thereafter, a loop is per- element, implying that the 'outside' of the domain to
formed over all the domains. For each domain, the be gridded now contains an element. The occurrence
faces corresponding to it are assembled and oriented of faces that are extremely close or crossing can very
in the proper direction. A tetrahedral mesh is then quickly lead to a failure of the advancing front
generated for this domain. A domain identifier is technique, making it impossible to treat these problems
attached to the newly created elements. The next on a routine basis. One possible way to circumvent I
domain is then processed in turn, until all domains this problem is to mark the faces of the initial front
have been gridded. with a so-called crossing environment variable LFACR

(1 :NFACE). This variable can either be obtained by I
checking the initial front for crossing faces, or by

3.2. Volume Meshing for Thin or Crossing Surfaces marking the different surface patches that comprise a
thin structure, fabric, or are crossing, before the

In many applications, portions of the boundaries to surface grid is generated. In the latter case, the surface m
be gridded will come very close together or even cross. faces inherit the crossing environment variable from
Examples where this occurs are the external meshing the surface patch they belong to. As an example, the
of thin-walled structures, such as shells (roofs, walls, surfaces shown in Fig. 2 have been marked with such I
etc.), membranes or fabrics (parachutes, sails, parasols, variables. Notice that not every surface patch has its
airbags, etc.), or CAD data that exhibit cusps (trailing own environment variable, but that all the surfaces
edges of airfoils and wings). For these cases, the initial lying on one side of a potentially troublesome region 1
surface triangulation will in all probability exhibit have been given the same environment variable. After
crossing faces and/or duplicate points. The application marking all the surface faces appropriately, the points
of the usual advancing front technique to this class of are marked according to the environment variable of
problems is not possible, as there is no mechanism to the faces surrounding them. The points that belong I
distinguish between the points that may or may not I

I
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to more than one environment, such as may occur i.e. including the effects of viscosity and the associated
along the ridges that separate two such regions (see boundary or mixing layers, is encountered commonly
Fig. 2), are marked as LPOCR(IPOIN) = - 1. The in engineering practice. For high Reynolds numbers,
marked points and faces can be used in a variety of the proper discretization of the very thin, yet important
ways to make sure that only the proper points and boundary or mixing layers requires elements with
faces are considered when introducing new elements aspect ratios well in excess of 1:1000. This requirement
for a face marked as belonging to a particular presents formidable difficulties to general, 'black-box'
environment. The two most important are: unstructured grid generators. These difficulties can be

(a) No points belonging to any other positive environ- grouped into two main categories:
ment are considered for the creation of a new
element with the face being deleted from the front. (a) Amount of Manual Input In most unstructured
This avoids most of the possible logic mistakes grid generators, the desired spatial distribution of
that would lead to failure. For the situation shown element size and shape is given by some form ofin Fig. 1, this would eliminate all potentially background grid or sources t6-8, 10]1. This seems
troublesome points from the list of possible points natural within an adaptive context, as a given grid,troublee IFoUTints ngromthe point s Pcombined with a suitable error indicator/estimator,

(b) No faces belonging to any other enviroment are can then be used as a background grid to generate an

considered for the face-crossing checks. Keeping even better grid for the problem at hand. Consider
the faces that belong to the 'other side' of a thin now trying to generate from manual input a first grid

surface situation would render it impossible to that achieves stretching ratios in excess of 1: 1000. The

introduce new faces on any of the two sides. This amount of background gridpoints or sources required

is because some of these faces will always be will be proportional to the curvature of the objects

close enough or crossing the newly formed immersed in the flowfield. This implies an enormous

element. For this reason, only the faces belonging amount of manual labour for general geometries,

to the present environment or no environment rendering this approach impractical.

(LFACR (IFACE-0) are kept for front-crossing (b) Loss of Control Most unstructured grid genera-
checks.

tors introduce a point or element at a time, checking
New (domain) points are always assigned to the the surrounding neighborhood for compatibilty.
value LPOCR(IPOIN) = 0. For the new faces, These checks involve jacobians of elements and their
LFACR (IFACE) is set to the maximum value of inverses, distance functions, and other geometrical
LPOCR encountered over the three points IP1, IP2, operIations that involve multiple products of coordinate
IP3 belonging to it: differences. As the stretching ratio increases, round-off
LFACR(IFACE)=MAX(0, LPOCR(IPI), errors can become a problem. To see this, consider

the mesh around a Boeing-747. The domain length
will be approximately 10' m, which corresponds to

In this way, all faces touching the surfaces marked 0(10) body lengths. The minimum element length
as belonging to an environment are marked as normal to the wing will have to be less than 0.01 mm
well. In order to grid as straightforwardly as possible in order to capture accurately the boundary layer,
the regions immediately adjacent to troublesome and 0.05 m in the other two directions. The maximum
surfaces, the faces marked as belonging to an environ- element length in the farfield will be of the order of
ment are given the highest priority for deletion from 20 m. For a mesh of this kind, the ratio of element
the active front. For advancing front generators that volumes is of the order of 3 x 10-12. Although this is
choose the face forming the smallest new element as well within reach of the 10-' 6 -accuracy of 64-bit
the one to be deleted next, the marked faces are arithmetic, element distortion and surface singularities,
artificially set to a very small element size. In this way, as well as loss of control of element shape can quickly
they are processed first. push this ratio to the limit.

Given these difficulties, it is not surprising that at
3.3. Generation of Grids Suitable for present, there does not exist a 'black-box' unstructured
Navier-Stokes Calculations (or structured, for that matter) grid generator that can

produce acceptable meshes with such high aspect ratio
The task of gridding complex geometries for the elements. The most common way to generate meshes
simulation of flows using the Navier-Stokes or suitable for Navier-Stokes calculations for complex
Reynolds-averaged Navier-Stokes equations (RANS), geometries is to employ a structured or semi-structured

I
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mesh close to wetted surfaces or wakes [33-36]. This used to meet them, the RANS grid generation
'Navier-Stokes' region mesh is then linked to an algorithm can be summarized as follows (see Fig. 3): n
outer unstructured grid that covers the 'inviscid' U
regions. In this way, the geometric complexity is M1. Given a surface definition and a background

solved using unstructured grids and the physical grid, generate a surface triangulation using an

complexity of near-wall or wake regions is solved by unstructured grid generator. o

semi-structured grids. This approach has proven very surface normals.

powerful in the past, as evidenced by many examples. M3. Smooth the surface normals in several passes in

A recurring problem in all of these approaches has ore toobtai a mor ma ms in r egin
bee ho tolin th sei-truturd msh egin wthorder to obtain a more uniform mesh in regions

been how to link the semi-structured mesh region with with high surface curvature.
the unstructured mesh region. Regions where such or M4. Construct a semi-structured grid with the infor-

surfaces with high curvature, as well as regions mation provided by the background grid and the
smoothed normals.

between surfaces that are very close. In these regions, M5. Examine each element in this semi-structured
the elements tend to be either too large or too small, region for size and shape; remove all elements 3
in some cases even folded, and there is usually a that do not meet certain specified quality criteria.
sudden jump in element size when entering the M6. Examine whether elements in this semi-structured
unstructured grid region. The design criteria for the region cross each other; if so, keep the smaller 3
grid generation strategy pursued here may be sum- relemnts eand otherlargeroones, untilmnole

marize as folows:elements and remove the larger ones, untln
marized as follows:

crossing occurs.
-The geometric flexibility of the unstructured grid M7. Examine whether elements in this semi-structured

generator should not be compromised for Navier- region cross boundaries; if so, remove the
Stokes meshes. This implies using unstructured crossing elements.
grids for the surface discretization. MS. Mesh the as yet 'empty' regions of the computa-

-The manual input required for a desired Navier- tional domain using an unstructured grid gener- i
Stokes mesh should be as low as that used for the ator in combination with the desired element size n

Euler case. In the present case, this requirement is and shape.
solved by specifying at the points of the background Strategies that are similar to the one outlined above
grid the boundary layer thickness and the geometric have recently been put forward by Pirzadeh [37, 38],progression normal to the surface. aercnl enptfrwr yPrae 3,3]

-The generation of the semi-structured grid should Mailler [19], and Morgan et al. [39], and others. In
the following, we consider the main ingredients

be fast. Experience shows that usually more than ihalf of the elements of a typical Navier-Stokes required for this technique in more detail.

mesh are located in the boundary-layer regions. 3.3.1. Element Removal Criteria
This requirement is met by constructing the semi- A critical component of the RANS gridding algorithm
structured grids with the same normals as en- described above is the proper matching of semi-
countered on the surface (see Fig. 3), i.e. without structured and fully unstructured grids. This requires-

recurring to smoothing procedures as the semi- good e nt rmvly crteried ridTeia teqr

structured mesh is advanced into the field [35, 36]. good element removal criteria. The criteria to be

-The element size and shape should vary smoothly considered are: element size, element shape, element

when going from the semi-structured to the fully overlap and element crossing of boundary faces.

unstructured mesh regions. (a) Element Size. The two main types of problems
-The grid generation procedure should avoid all of encountered in semi-structured grid regions that are

the problems typically associated with the genera- related to element size are elements that are either too
tion of Navier-Stokes meshes for regions with high large or negative (folded). These problems originate
surface curvature: negative or deformed elements for different reasons. Elements that are too large may
due to converging normals, and elements that get occur if the surface normals diverge close to convex
too large due to diverging normals at the surface. surfaces of high curvature. The situation is shown n
In order to circumvent these problems, the same diagrammatically in Fig. 4. The volume of eachtechniques which are used to achieve a smooth darmaial nFg .Tevlm fec
matching of semi-structured and unstructured mesh element in the semi-structured mesh region is compared

Sto the element volume desired by the user for the
regions are used. particular location in space. Any element with a U

Given these design criteria, as well as the approaches volume greater than the one specified by the user is I
nI
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I

U a) Define Surface and Spatial b) Compute Surface Normals
Distribution of Element3 Size/Shape

I

I C) Obtain Boundary Layer Mesh d) Remove Bad Boundary Layer
Elements

i

e) Complete the Mesh Using
Advancing Front Generator

Fig. 3. Navier-Stokes meshing procedure.

5 large elements

I
wall

F
I

I Fig. 4. Element distortion close to a convex corner.

I
I



192 R. L6hner 3
can be performed to determine whether side-ratios are
consistent with boundary layer gridding. All elements
that do not satisfy this criterion are removed.

distorted or wall(c) Overlapping Elements. Crossing or overlapping

negative elements elements occur in regions close to concave surfaces
with high curvature, or when the semi-structured grids
of two close objects overlap. Another possible scenario
is the overlap of the semi-structured grids of mixing
wakes. The main criterion employed is to keep the
smaller element whenever an overlap occurs. In this
way, the small elements close to surfaces are always

Fig. 5. Element distortion close to a concave corner, retained. Straightforward testing would result in

O(Ne.) operations per element, where Ne, denotes the
marked for deletion. When concave surfaces exhibit number of elements, leading to a total number of
high curvature, the normals will tend to come together operations of O(N•). By using quad/octrees [7], or
or even cross, leading to elements with negative other suitable data structures [23, 24], the number of
jacobians. The situation is shown diagrammatically in elements tested can be reduced significantly, leading
Fig. 5. As before, the element volumes are computed, to a total number of operations of O(Nl log NAe).
and elements with negative volumes are marked for
deletion. We have observed that typically the elements (d) Elements Crossing Boundary Faces. In regions
adjacent to negative elements tend to be highly where the distance between surfaces is very small, the 3
deformed. Therefore, we also remove all elements that crossing of boundary faces by elements from the i
have points in common with negative elements. semi-structured region is likely to occur. As this test
Obviously, this one-pass procedure can be extended is performed after the element crossing tests are
to several passes, i.e. neighbors of neighbors, etc. Our conducted, the only boundaries that need to be treated
experience indicates, however, that one pass is suf- are those that have no semi-structured grid attached
ficient for most cases. to it. In order to detect if overlapping occurs, we loop

over the surface faces, seeing if any element crosses it. 3
(b) Element Shape. The aim of a semi-structured As before, straightforward testing would result in an i
mesh close to a wall is to provide elements with very expensive O(N, .Nf) procedure, where Nf denotes the
small size normal to the wall and reasonable size along number of boundary faces. Again, the use of quad/
the wall. Due to different meshing requirements along octrees reduces the complexity to O(Nr log N¢1).
the wall (e.g. corners, separation points, leading and
trailing edges for small element size, other regions with 3.3.2. Smoothing of Surface Normals
larger element size), elements that are longer in the Smoothing of surface normals is always advisable for
direction normal to the wall than along the wall may regions with high surface curvature, particularly
appear. The occurrence of such elements is shown corners, ridges and intersections. In order to start the
diagrammatically in Fig. 6. For the semi-structured smoothing process, initial point-normals RNORO, as
grids, the element and point numbering can be well as boundary conditions for point-normals must I
assumed as known. Therefore a local element analysis be provided. The normal at any point is computed by

elements with wrong I
asetratio

I

Fig. 6. Elements with undesired shape.
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CASE PROCEDURElI surface 1I--.

ýurace 2 n

median plane
a) Ridge Normal forced to be in median plane

Isurface I

I
urface 2

surface 3

Ub) Corner Average of 3 surface normals (fixed)

Snon-wetted surface

I
I

Fig. 7. Boundary conditions for normals.

c) Wetted/Non-Wetted Interface Normal forced to be in plane of non-wetted faces

averaging the normals of all faces touching it. The 3.3.3. Point Distribution along Normals
choice of boundary conditions is crucial in order to Ideally, we would prefer to have normals that are
ensure that no negative elements are produced at perpendicular to the surface in the immediate vicinity
corners, ridges and intersections. Figure 7 shows a of the body, and smoothed normals away from the
number of possibilities. Note that the trailing edge of surface [43]. Such a blend may be accomplished by
wings (a particularly difficult case requiring particular using Hermitian polynomials. If we assume given:
attention) falls under one of these categories. In each
smoothing pass, the point-normals are averaged in -the points of surface xo;
the faces. Thereafter, the new face-normals are -the boundary layer thickness 6;

assembled additively at the points, and normalized. -the surface normals before and after smoothing
The complete smoothing procedure may require in no, n1;
excess of 200 passes in order to converge. This slow -a non-dimensional boundary layer point-distribu-

convergence may be speeded up considerably through tion parameter ý of the form: .i,1 = oi, ý,, = 1;
the use of conjugate gradient [40] or superstep [41, then the following Hermitian cubic polynomial in
42] acceleration procedures. Employing the latter will produce the desired effect:
procedure, convergence is usually achieved in less
than 20 passes. x = x0 + i_6no + "(2 - ý)'6(n, - no) (1)

I
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I34

I

I
• Fig. 8. Selection of diagonals when splitting prisms into tetrahedra.
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12: up 12: up1
23: up 23: down
31F: down 31S: dfown Fig. 9. Splitting of prisms into tetrahedra. I
One can readily identify the linear parts •Si In some compatibility across faces is assured. The problem is,
cases, a more pronounced (and beneficial) effect may however, that a prism cannot be subdivided into

beproduced by substituting for the higher-order tetrahedra in any arbitrary way. Therefore, care has 3I
polynomials a new variable ?7, i.e. to be taken when choosing these diagonals. Figure 9

illustrates the possible diagonals as the base sides of4"2- €) :-* r(2 - ii), ii • (2) the prism are traversed. One can see that in order to 3
where, e.g. p = 0.5. obtain a combination of diagonals that can be U

subdivided into tetrahedra, not all sides of the
3.3.4. Subdivision of Prisms into Tetrahedra triangular base have to be up-down or down-up as
One of the aims of the RANS gridding technique is one traverses the sides. This implies that the sides of 1
to arrive at a single, smoothly varying mesh consisting the triangular base mesh have to be marked in such a
of tetrahedral elements only. Therefore, the prisms way that no such combination occurs. A proper set
formed by extruding the surface triangles along the of diagonals can be produced by a simple iterative 31
smoothed normals must be subdivided. This subdivi- procedure described in [44]. When inverting the
sion has to be performed in such a way that the side-diagonal orientation, those diagonals with the
diagonals introduced at the rectangular faces of the smallest large internal angle are sampled first in order 3
prisms match across prisms. The best possible diagonal to minimize the appearance of bad elements. Our 5l
for each of these rectangular faces is chosen in order experience indicates that even for large surface grids
to avoid large internal angles, as shown in Fig. 8. As (> 100 Ktria), the number of diagonals that require 3
this choice is only dependent on the coordinates and inversion of side/diagonal orientation is very small 5
normals of the two end-points of a surface side, (<15).

!
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3.4. Extension to Higher Order Triangles and polyhedra (pyramids, prisms, hexahedra), in order to
Tetrahedra arrive at grids that contain a minimum amount of

tetrahedra. This effort was not successful. The problem
Once a grid of linear triangles or tetrahedra has been is the proper transition of elements with quad-faces
obtained, it may be post-processed further in order to to elements with triangular faces. Even though all
obtain higher order elements. This is particularly combinations were tried, it was found that the 'yield'
useful for structural mechanics problems, where linear of good hexahedra was below 500 for typical large
triangles and tetrahedra have been found to be tetrahedra grids. The second approach is to subdivide
notoriously 'stiff' elements [45]. Quadratic triangles each tetrahedron into four hexahedra. While the
and tetrahedra offer an interesting alternative for quality of such a hexahedra-only grid may appear
complex geometries, and have gained widespread use questionable, we have found no appreciable degrada-
and acceptance in recent years. For quadratic ele- tion by using them within DYNA3D [48].
ments, all that is required is the introduction of new
points along the edges (or sides) of the original linear
element mesh. These new points are then introduced 4. Improvements in Speed
in the connectivity matrix. Finally, the positions of
the new boundary points are corrected for curved One of our aims is to be able to generate grids in
boundaries. Cubic or quartic elements require some excess of a million elements in a matter of minutes on
more work, as the new degrees of freedom can now a workstation. For this reason, grid generation speed
lie on element faces, or within the elements. has been a major focus of research. The incorporation

of optimal search procedures, such as octrees and
3.5. Extension to Quadrilateral and Hexahedral linked lists, has enabled advancing front generators
Elements to realize an operational complexity of O(N log N)

[7, 9]. Further reductions in meshing times may
The structural mechanics community has had a be achieved by avoidance of unnecessary search
historic preference for quadrilateral or hexahedral overheads, global h-refinement, vectorization and
elements. High-speed structural dynamics codes, such parallelization.
as DYNA3D or NIKE3D [45, 47], have used these
types of elements almost exclusively. The generation 4.1. Reduction of Search Overheads
of quadrilateral elements on any 3-D surface may
either be accomplished ab initio using paving tech- Our experience indicates that the number of close
niques [11], or by first generating a mesh of triangles points and faces found for checking purposes is far
that is then post-processed further. The second too high. As an example, consider the search for close
approach proceeds through the following steps: points: there may be up to eight points inside an

(a) generate a mesh of triangles with element size octant, but of these only one may be close to the face

twice as large as the final desired quadrilateral to be taken out. The idea is to filter out these 'distant'
element mesh; faces and points in order to avoid extra work

(b) join as many triangles as possible into well-shaped afterwards. While the search operations are difficult

quadrilaterals; to vectorize, these filtering operations lend themselves
(c) smooth the grid of triangles and quadrilaterals to vectorization in a straightforward way, leading to

obtained in the previous step; a considerable overall reduction in CPU requirements.3 (d) subdivide the elements further: triangles are Moreover, filtering requires a modest amount of
converted into three new quadrilaterals, while operations as compared to the work required in
quadrilaterals yield four new quadrilaterals; subsequent operations. The most important filtering

(e) smooth the final all quadrilateral mesh. operations are:

The generation of hexahedral elements is a different -removal of points that are too far away;
matter entirely. If the starting point is a grid of -removal of points that are not visible from the face
tetrahedra, two ways to proceed are possible: (a) fusion to be removed from the front (these would form

of tetrahedra into other polyhedra, or (b) fission of elements with negative jacobians, see Fig. 10);
tetrahedra into hexahedral elements. -removal of points that are not visible from the

visible adjacent faces to the face to be removed from
We have tried both approaches. For the fusion the front (these would form elements that cross

technique, the aim is to join tetrahedra into other the front, see Fig. 11);

I
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0 •4.3. Vectorization

0 S When generating large grids on traditional vector- 5
-€ 00------_ 0O supercomputers, due care has to be taken to achieve

a high degree of vectorization. The advancing front
S 1-! technique is a sequential procedure, in which elements

ifout ifout are introduced one at a time. This would seem to
preclude efficient vectorization. However, many of the

Fig. 10. Removal of points not visible from the face to be removed, time-consuming search operations, such as the face-
crossing and filtering techniques, may be readily I

* •vectorized. The author's advancing front generator
achieves a speed-up of 1:6 on the CRAY-YMP when

0 • vectorization is enabled, indicating a fair degree of
vectorization.

4.4. Parallelization 3
ifout ifout

As seen before, the advancing front technique is
faces. I. Removal of points not visible from the visible adjacent essentially a scalar technique as far as the introductions

of elements is concerned. However, given a sufficientU
distance between them, many elements may be
introduced at the same time. Given that the number
of operations required for the creation of a I
element can vary by orders of magnitude (very small
for a face on a convex front far away from any other
front faces, large in regions of collapsing fronts), only 5
MIMD machines can be contemplated for paralleliza-

i fout tion [49, 50]. The background grid provides a useful
means to partition the domain to be gridded into 3

Fig. 12. Removal of faces that cannot see the face to be removed. subdomains. Elements are generated in parallel
in each of these subregions. Thereafter, the regions
between the subdomains are also generated in parallel.

-removal of faces that cannot see the face to be One processor, which acts as master, directs the
removed (there is no need to check for these, see gridding of the subregions by allocating and transmit-
Fig. 12). ting to each of the other 'slave' processors the active

faces and points of the front, as well as the background 3
4.2. Global h-refinement grid elements corresponding to this subregion. Once

each of the other processors has completed the
While the basic advancing front algorithm is a meshing of its subregions, the information is trans- I
scalar algorithm, h-refinement can be completely mitted back to the master processor. Given that the U
vectorized. Therefore, the grid generation process can time required to generate a tetrahedral mesh is several
be made considerably faster by first generating a orders of magnitude larger than the transmission 3
coarser mesh that has all the desired variations of times for the information required for it, this 'card- I
element size and shape in space, and then refining dealer' hierarchy of processors works well for up to
globally this first mesh with classic h-refinement [10]. several hundred processors. For parallel machines
Typical speed-ups achieved by using this approach are with an even higher number of processors, intermediate 5
1:6 to 1: 7 for each level of global h-refinement. 'master-slave' hierarchies can be employed. As the
Typical 3-D advancing front generators construct number or processors grows beyond ten, it becomes
grids at a rate of 12000 tetrahedra per minute on the impossible to store the complete grid in a single 5
IBM-RISC/550 and 50000 tetrahedra per minute on processor. In order to circumvent this limitation, a
the CRAY-YMP. With one level of h-refinement, this 'distributed id' data structure was introduced in [50].
last rate is boosted to 190000 tetrahedra per minute. Given that the typical user prefers coarse back-
This rate is essentially independent of grid-size, but ground grids, finer background grids that allow for I
can decrease for very small grids, well-balanced subdivisions with uniform work loads

I
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across them are generated via a pre-processor. This first line of thought may be summarized as
The details of this procedure, as well as further follows:
enhancements of the parallel grid generation procedure (a) Any grid required for analysis does not consist ofmay be found in [50]. infinitesimally small elements, but of a finite

amount of (finite) elements.
5. Improvement in User-Friendliness (b) A point lying on the surface is the only unique

item that can define unequivocally the surface of

Improvements in range of capabilities and speed the domain to be gridded (support points and the

would be of little use unless similar enhancements functions used would do so too: the problem is

were achieved in user-friendliness. In this section, we that in practice, we are only provided with the

treat two areas where user-friendliness has been support points, but not the functions).

Iimproved significantly: surface definition from discrete (c) A point lying on the surface can easily be obtained

data, and the reduction of manual input to specify from any CAD-system.
arbitrary element size and shape distribution in space. (d) If the cloud of points is dense enough, whenever

a point is required for the grid used for analysis,

5.1. Surface Definition from Discrete Data it can be obtained from the cloud of points.

A second line of thought is prompted by the observa-
For complex configurations, the most man-hour tion that in many instances, the CAD model is either
intensive part of the analysis processons the prepara- not available, or is not the starting point for the
ton of the surface data. Several reasons can be given surface description. Examples for surface information
Sfor this: obtained discretely ab initio include: terrain data

(a) The amount of CAD data can be very large. gathered via remote sensing for climate predictions.,
Consider the complete external shape of an geological data gathered via seismic analysis or
airplane, car or ship, the cooling head of a probing for seepage and ground-water flow simula-
reciprocating engine block, or a complex stamp- tions, digitization of clay models for the design of cars
ing part. In all of these cases, the analyst will be and motorcycles, and CAT-scan data for biomedical
faced with hundreds, if not thousands of surface applications. In any of these cases, the surface is
patches that have to be merged, coordinated, and defined by a point-set.

possibly intersected and trimmed. This is a tedious Surface reconstruction from clouds of points has
and thankless task that demands many man- been pursued for many years by computer scientists.
hours. In some instances, remarkably complex structures

(b) The data used by one department of a company have been reconstructed [51-53].
may not even be compatible with the data used The advancing front technique may also be used
by another department of the same company, let to construct a surface triangulation from the cloud
alone those used by other companies. Even after of points. Starting from a point in the domain, an
years of effort to standardize CAD input and initial side is built with the nearest neighbor. There-
output formats, in practice the data sets stemming after, a third point in the neighborhood is selected
from different CAD packages are not compatible. to construct the first triangle. We now have an
In the United States in particular, many large initial front of three sides, as well as a surface
companies still have their own in-house CAD normal associated with each side given by the normal
system, which is incompatible with that of other to the triangle. The sides and surface normal are
companies or the IGES standard. oriented in such a way that the normal is pointing in

(c) Even if the data can be read by another CAD the direction of the reference points. If the three
package, the splines, b-splines or other means of reference points cannot be seen by the present face
defining the geometry may not be the same as that and its normal, another set of three points is selected.
of the originating package, prompting errors, This initial face and its associated sides define the
corrections, delays, and the associated increase in initial front. We then proceed, for each subsequent3 analysis cost and uncertainty, side, as follows:

One possible solution to this dilemma is to do Ti. Select the smallest side of the current front as
away with CAD data in the form of continuous the next side to be deleted from the front.
functions, and to start from a cloud of points T2. Obtain all the points in the neighborhood of this
that defines the surface of the domain to be gridded. side.

I
I
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T3. Filter out the points that are not within the 'cone

of visibility' of the side.2
T4. IF: no points are left:I

-mark the side as an edge-side; g
-add it to the bottom of the side-list;
-proceed to the next side (GOTO T.1). r(X)
ELSE:
-obtain all the sides in the neighborhood;
-order the points according to suitability; X
-select the 'best' close point that does not cross

any of the current front-sides to form a new Fig. 13. Line source.
triangular face;

-add the new face to the surface grid;
-compute the surface normal for the new

face; A flexible way that combines low user input, arbitrary
all front arrays; but smoothly varying element size, and can be

ENDIF associated with CAD data is to define sources. The m

T5. If any sides remain in the front: GOTO T.1I. element size for an arbitrary location x in space is
given as a function of the closest distance to the source

This procedure works well for clouds of points r(x). Consider first the line source given by the points

that are sufficiently fine [54]. We have found that x 1 , x 2 shown in Fig. 13. The vector x can be
in order to avoid problems of non-uniqueness at decomposed into a portion lying along the line, and
ridges and corners, it is important to start the the normal to it. With the notation of Fig. 13, we have 3
triangulation procedure using as the initial point x = x1 + ±g, + an (3)
the one for which the surface curvature is minimal.
Procedures to define surface curvature for a discrete The ý can be obtained by scalar multiplication with 3
set of points, as well as further refinements may be g,, and is given by: m
found in [54]. (X-XJ)g1  (4)

5.2. Reduction of Input Requirements to Specify g1*"g

Element Size By delimiting the value of ý to be on the line:

The specification of the desired element size and shape = ilx((, min(1, ý)) (5)

in space has been a recurring problem for most grid the distance between the point x and the closest point
generators. This is because the requirements for on the line source is given by:
simplicity (low user input) and flexibility (complex 3
geometries) are conflicting. The earliest advancing 6(x) = Ix - X - ý'gil (6)

front grid generators employed a background grid to Point sources can be constructed by collapsing the
specify the desired element size and shape in space. line end-points into one. Consider next the surface i
This worked well for simple geometries, and was source element given by the points x1 , x2, x3 shown
particularly suited for adaptive remeshing procedures in Fig. 14. The vector x can be decomposed into a
[6, 28, 29]. For CAD-based surface descriptions, portion lying in the plane given by the surface source 3
the modified or finite quad- and octree techniques points, and the normal to it. With the notation of Fig.U
provide an automatic way of refining the mesh in 14, we he

regions of high surface curvature [20, 21]. This works 11

well for problems that require a fine mesh in regions x =x 1 + gý1 + q9g2 + Yg 3  (7)
of high surface curvature, and a coarser mesh away where
from surfaces. While this is indeed the case for many
elliptic problems, a user may still wish to refine the 93 )19 (8) g
mesh in some arbitrary spatial region of space (e.g. a X 9 2 1

heat-source, an oblique shock in supersonic flow, etc.). By using the contravariant vectors g1, g2, where
Therefore, alternative ways to prescribe element size By.g usi, we have as
and shape in space, that combine generality and low gg =

user input, are required. ý=(x-x)'g 1, 1-=(x-x 1 )'g 2 , •=l--j (9) I
I
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x For obvious reasons, the parameter r1 is called the
scaling length. Commonly used functions of p used to

X3 r(X) define the element size in space are:

(a) Power laws. given by the expressions of the
I form [10]

g2 6(x) = 6o[l + p7] (13)

with the four input parameters 6o, r0 , rt, /; typically,
1.0 < 7 <2.0.

gJ (b) Exponentialfunctions: which are of the form [ 18]

6 9(x) = 60 eP (14)

with the four parameters 60, ro, rt, 7.

Xl (c) Polynomial expressions: which avoid the high
* X cost of exponents and logarithms by employing

Fig. 14. Surface source, expressions of the form:

The point x lies 'on the surface' if: ( 1 =

0 < ý, q, C < 1 (10) with the n + 3 parameters 60, ro, rl, ai. We have found

Whenever this condition is violated, the point x will that in practice quadratic polynomials are sufficient,

be closest to one of the edges, and the distance to the i.e. n so 2.

surface is evaluated by checking the equivalent Give a set of m sources, the minimum element size

line sources associated with the edges. If, on the other computed for each of them is taken whenever an
hand, eqn (10) is satisfied, the closest distance between element is to be generated:
the surface and the point is given by: 6(x) = min(61,6t,....6,) (16)

6(x) = (10 - - Wj)x 1 + ýx 2 + ?Jx3 - xl (11) Sources offer a convenient and general way to define

As one can see, the number of operations required to the desired element size in space. They can be

determine 6(x) is not considerable as long as one introduced interactively on a workstation with a

pre-computes and stores the geometrical parameters mouse-driven menu once the surface data is available.

of the sources (gi, g , etc.). In order to reduce the They suffer from one major disadvantage: at every

internal complexity of a code, it is advisable to only instance, the generation parameters of all sources need

work with one type of source. Given that the most to be evaluated. For a distance distribution given by

general source is the surface source, line and point eqns (12)-(16), it is very difficult to 'localize' the

sources are prescribed as surface sources, leaving a sources in space in order to filter out the relevant ones.

small distance between the points to avoid numerical On the other hand, the evaluation of the minimum

problems (e.g. divisions by zero). distance obtained over the sources may be vectorized

Having defined the distance from the source, the in a straightforward way. Nevertheless, a high number
next step is to select a function that is general yet of sources (N, > 100) will have a marked impact on

requires a minimum amount of input to define the CPU times, even on a vector-machine.

element size as a function of distance. Typically, the
user desires a small element size close to the source, 5.2.2. Element Size Attached to CAD DATA

and a large element size away from it. Moreover, the For problems that require gridding complex geom-

element size should, in many instances, be constant etries, the specification of proper element sizes can

(and small) in the vicinity r < ro of the source. Typical become a tedious process. Conventional background

cases that fall under this category are wings and grids would involve many tetrahedra, whose genera-
slender bodies or pipes for fluid flow problems. An tion is a labour-intensive, tedious task. Point, line, or

elegant way to satisfy these requirements is to work surface sources are not always appropriate either.

with functions of the transformed variable Curved 'ridges' between surface patches, as sketched
in Fig. 15, may require many line sources. Similarly,

max r(x) - ro the specification of gridding parameters for surfaces
r, with high curvature may require many surface sources.

I
I
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Ridge W~her-e Small Elements Are Required I

I
Fig. 15. Element size attached to CAD data. 3

The net effect is that for complex geometries one is specifying a small distance for line Li without
faced with excessive labour costs (background grids, proper modification of the distance parameter for line
many sources), and/or CPU requirements during L2 can lead to size incompatibilities and badly
mesh generation (many sources). shaped elements. This is because this type of specifica- 3

A better way to address these problems is to attach tion of element size is 'hyperbolic' by nature, starting
element size (or other gridding parameters) directly from the surfaces and marching blindly into the
to CAD data. For many problems, the smallest domain.
elements are required close to the boundary. There-
fore. if the element size for the points of the current
front is stored, the next element size may be obtained 6. Examples
by multiplying it by a user-specified increase factor ci. 6.1. World Trade Center U
The element size for each new point introduced is then
taken as the minimum obtained from the background In order to show the current use of large-scale
grid 6

bg, the sources 6s, and the minimum of the point tetrahedral grids for complex geometries we consider 3
sizes corresponding to the face being deleted, multiplied one of the floors of the World Trade Center. This
by a user-specified increase factor ci: particular configuration included approximately 280

cars, in excess of 100 columns, ramps, inner walls, etc.
6 = min(6 bg, 6s, ci'min(6a, 61, 6c)) (17) Some of the data were merged from AutoCad (e.g.

Typical values for ci are 1.0 < ci < 2.0. The first value columns, ramps), some from architectural drawings

yields a mesh of uniform element size, whereas the (e.g. parking positions, walls), and some from measure-
latter gives rise to grids with elements that grow ments (e.g. cars, beam widths). What is typical for

real-life applications of this kind is the convergence of
rapidly in size away from the surface. Specifying or data from several sources (CAD, drawings, models,
attaching element sizes to CAD data can lead to measurements) that the CFD user must merge and
incompatibilities if surfaces are close to each other. 'trim'. Note that CAD tools by themselves will not
For example, in the situation shown in Fig. 16, solve this task. Rather, specialized software tools that

can read CAD data, have some CAD-like functionality 3
to merge and construct data, and impose the proper
boundary conditions are required. The preparation of

_ line 1 the data for this configuration required 1 week. The
surface definition data is shown in Fig. 17(a). The grid i
consisted of approximately 18 Mtet elements, with
600 ktria surface faces. Although this number of
elements at first sight would appear as excessively 3

-.-.. Lne Wi t Specified high, it was the minimum required to reproduce
Element Size * faithfully the geometry and physics under considera-

L tion. A simulation was carried out to assess the
L Line 2 damage due to blasts. A snapshot of one such run is

Fig. 16. Potential problems with incompatible sizes. shown in Fig. 17(b). I
I
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I

I
I
I
I

I (a)

IM

I

(b)

Fig. 17. World Trade Center B2 Level: (a) surface definition (600 ktria); (b) blast simulation (pressure contours).

I
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a) b)

_ S I

I

d) d)

IFig. 18. Sails: (a) surface definition; (b) surface mesh; (c) surface mesh (close-up); (d) surface pressure.3

6.2. Sails 6.3. Chip

This example illustrates an application that requires a In this particular instance, the proper discretization of
volumetric grid around thin or crossing surfaces. The the solid domain inside a chip, as well as the
configuration is shown in Fig. 18(a). Note the surrounding fluid medium, was required. The definition
inclination of the sails, as well as the very narrow gap of the surfaces is shown in Fig. 19(a). The complete I
between the front and back sails. The sails, which domain had five different materials, including the
measure approximately 30 m, were modeled as having fluid. In this instance, no sources were specified.

Sthickness of I mm. For all practical purposes, this Instead, the option to attach element size directly to i
is equivalent to a vanishing thickess. A background CAD data was used extensively. Most of the chip
grid of only five elements (a hexahedron split into surfaces had an element size attached to them. For
tetrahedra) enclosing the domain was used to prescribe the fluid region, a Navier-Stokes grid was required.
linear variation of element size in the vertical direction, The surface of the grid, which consisted of approxi-
with 60 = 10 m and 51 = 30 m. In addition, two line mately 1.5 Mtet elements, is shown in Fig. 19(b).
sources and six surface sources were employed to Results from an incompressible flow solution with
concentrate smaller elements on the sails and between conjugate heat transfer at a Reynolds number of I
them. Furthermore, element size attached to CAD Re = 1000 based on the diameter of the chip are
data was used for the sails. Two views of the surface included in Fig. 19(c) to show that these grids can
mesh are shown in Figs 18(b, c). As before, the surfaces indeed be used for industrial applications. Due to the I
of the sails cross. The final mesh consisted of ability to attach grid-size directly to CAD data, the
NELEM =200 277 elements and NPOIN =20383 pre-processing time was kept to a minimum. Less than
points. The contours of the surface pressures obtained 4 h (one morning) were required to input all the
on this mesh for an inviscid flow simulation are shown surface defining information, the grid generation
in Fig. 18(d). parameters, and to obtain the mesh. I

U
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I

,
I

II

Fig. 19. (a).

I

U Fig. 19. (b).

6.4. Submarine Surface Thereafter, as many elements as possible were fused
into 'good' quadrilaterals. This resulted in approxi-

For this case, an all-quad surface discretization for mately 11 000 quads and 2000 remaining triangles.
the hull of a generic submarine configuration was The final all-quad mesh, obtained after global
required for structural mechanics applications. The h-refinement, had approximately 50000 elements.
surface definition is shown in Fig. 20(a). A total The generation process is shown in Figs 20(b-d).
of 24 line sources were used to specify the desired Close-ups of the final mesh, shown in Figs 20(e-f),

element size in space. An initial surface grid with indicate that high quality surface grids may be

approximately 24000 triangular elements was built. obtained in this way.I
I
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~II

I
I

(c) I
Fig. 19. Chip simulation: (a) surface
definition; (b) surface mesh: (c) simulation
results (Re 1000, streamlines).

I
I
I

IFig. 20. (a).

Fig. 20. (b).

U
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i
I
I
I

I
3 •Fig. 20. (c).

II
I
I,

I Fig. 20. (d).

6.5. Impacting Rod hexahedral grid generation schemes for geometrically
complex problem.

Figure 21 shows the comparison of two runs conducted
by using (a) a conventional hexahedral grid and (b) a 6.6. Definition of a Die Stamping Surface
hexahedral grid obtained by subdivision of tetrahedra
with DYNA3D. Observe that the results are very This example shows how input preparation times may
similar, but that the mesh used for the 'brick-from-tet' be reduced by working directly from discrete data
mesh is actually finer. Given that a major portion of instead of CAD data. The original CAD data set had
typical analysis man-hours is devoted to grid genera- over 500 surface patches, many of them overlapping
tion, we consider these results as very encouraging. and in need of trimming. The cloud of points, obtained
Given the flexibility and degree of automation that from a digitization of the actual part, had 4398 points
tetrahedral grid generators have achieved, the splitting and is shown in Fig. 22(a). The final surface obtained
approach seems an attractive alternative to other is depicted in Fig. 22(b). Observe the presence ofI

I



206

R. L6hner

--- I
/I

< I
JI

Fig. 20. (e).I
SI

Fig. 2o. Generic submarine configuration: (a) I
S~I

srace dfnition; (b) surface mesh (all-tria);(c) surface mesh (mixed quad-tria); (d) surfacemesh (all-quad); (e) close-up of tail region:(f) close-up of tail region.
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elts= 972 elts= 6132
nodes= 1369 nodes= 7551
eps-mnx = 2.835 eps-mx = 3.097
Del-R = 0.3607 Del-R = 0.3943

Del-H = 1.086 Del-H = 1.093

contour values
A- 0.OOE+00

8- ~4.eaE-01
C- B.eBE-01

D- i. 20E+00

E - I. 60E+00

F- 2.0OBE:+0

G - 2. 40E+00

H- 2.BBE+903Fig. 21. Impacting rod problem: (a) standard 'good-looking' mesh results; (b) 'brick from tet' mesh results.

Fig. 22 ()

between .** * .adacn fae excede 60'.: .:: .The surface shown4 ~ hee

tra g l t on f rt i c o d o oi t o k le st a .. a all Grd G n r ti n o ou l isl
30so h BM R 6")05 0...: Th example*. clal*ofg rto

rdgesratin the edgseofthe parnt. nsoesets, Themin angle conmshsum runing efothcan doble risieducd fidrasticalya

combining over 500 surfaces is a tedious and time- in a bay was generated on the Intel Touchstone Delta
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II
(b)

Fig. 22. Surface reconstruction for a die
stamping part: (a) cloud of points;
(b) wireframe of final surface.

Background Mesh Mesh After Subdomain Generation I

I

Surface of Final Assembled Mesh Final Mesh 3
Fig. 23. Parallel grid generation of a double missile configuration.

I
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machine using 34 processors. The configuration is 2. Baum, J.D.; Luo. H.: Ldhner, R. (1993) Numerical simulation
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